scholarly journals Effects of Anti-Glycoprotein Antibodies on Response of Immune Thrombocytopenia Patients to Thrombopoietin Receptor Agonists and on Megakaryocytes Viability

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1048-1048
Author(s):  
Marina Izak Karaev ◽  
Alexandra Kruse ◽  
Margaret Morrisey ◽  
Heyu Ni ◽  
Zhu Guangheng ◽  
...  

Abstract Background Immune Thrombocytopenia (ITP) is a bleeding disorder due to a combination of increased platelet destruction and reduced production, often secondary to anti-platelet/megakaryocyte antibodies. The presence of antibodies to glycoproteins (GP) IIb/IIIa (integrin αIIbβ3) and GPIb/IX, detected in majority of ITP patients, may correspond to different responses to treatment, i.e., anti-GPIb is associated with more severe disease, and less responsive to intravenous immunoglobulins and steroids. Thrombopoietin Receptor Agonists (TPO-RA) increase platelet production by stimulation of megakaryopoesis. Predictors of response to TPO-RA and influence of antibody profile on response are currently unknown. In our previous study we investigated Absolute Immature Platelet Fraction (A-IPF) prior to TPO-RA treatment and did not find a correlation between A-IPF, anti-GP antibodies, and platelet counts. The aims of this study were to further investigate: 1. The role of anti-GP antibodies in response to TPO-RA; 2. Effect of patients' antibodies on megakaryocyte (MK) viability, maturation, apoptosis and formation of proplatelets (in vitro); 3. The influence of patients' clinical characteristics on response to TPO-RA. Materials and Methods 91 patients with persistent or chronic ITP, were treated at Weill Medical College of Cornell University until January 2015 with TPO-RAs: 52 patients received eltrombopag, 22 romiplostim and 17 avatrombopag. Serum samples of 84 patients were analyzed for the presence of anti-GP by MAIPA assay as previously described. Patients with baseline platelet counts less than <30x109/L were defined as responders to TPO-RA if the average of their six median monthly platelet counts was ≥50x109/L and doubled from average baseline counts (prior to TPO-RA). Patients with baseline platelet counts 30-50x109/L were responders if the average platelet count was ≥75x109/L. MKs were derived from human umbilical cord blood stem cells as previously described. Cells were grown using SFEM medium, adding on day 0 of culture 50 ng/ml recombinant TPO and aliquots of serum of ITP patients or healthy controls. The percentages of immature (CD41+/CD42-), mature (CD41+/CD42+), viable and apoptotic MKs were analyzed by flow cytometry on day 12. Apoptosis was analyzed by measuring Mitochondrial Outer Membane Potential (MOMP) and Phosphatidyl Serine (PS) externalization. MKs were considered apoptotic if they had positive staining for PS externalization, viable if positive for MOMP, and dead if positive for 7-Aminoactinomycin D (7AAD). Proplatelet formation by MKs was analyzed by microscopy. Statistical analysis using unpaired T-test and Pearson correlation test were performed. Results Ninety-one patients were included, 40 male (44%) and 51 female (56%), with a median age of 37.4 years (range 2-87). Median duration of ITP before TPO-RA treatment was 8 years (range 0.3-45). The 18/91 (19.8%) non-responders to TPO-RA were not different from the 73/91 responders in age, gender, number of prior treatments, duration of ITP, and past splenectomy. The presence of either or both anti-GP antibodies was correlated with average lower platelet counts on TPO-RA: 82.3 x109/L versus 123x109/L in patients without detected antibodies ("neither") (p=0.003). However, the response to TPO-RA was not influenced by the type of antibody: in patients with anti-GPIb the average platelet count was 76.1x109/L, and with anti-GPIIb/IIIa 80.7x109/L (Figure 1). In culture, excess dead MKs were found in anti-GPIb group and antiGPIb&antiGPIIb/IIIa group compared to "neither" group (p=0.0013 and p=0.027 respectively) and comparing antiGPIb&antiGPIIb/IIIa to control (p=0.0025). We did not observe changes in the degree of MK apoptisis or in MK maturation in the presence of serum antibodies. In cultures treated with serum of patients having anti-GPIb, less proplatelets were detected comparing to control (p=0.044) or to "neither" (p=0.0039). We conclude that patients with anti-GP antibodies respond less to TPO-RA, however there is no difference in response to TPO-RA between patients having anti-GPIb and anti-GPIIb/IIIa, unlike responses to other treatment modalities (e.g., steroids or immunoglobulins). TPO-RA could be a preferable treatment option in ITP patients having anti-GPIb. Figure 1. Average 6-months platelet counts of TPO-RA-treated ITP patients divided into groups by presence of antibody/ies. Figure 1. Average 6-months platelet counts of TPO-RA-treated ITP patients divided into groups by presence of antibody/ies. Disclosures Off Label Use: Eltrombopag, romiplostim and avatrombopag are a thrombopoietin receptor agonist approved for the treatment of thrombocytopenia in adults with chronic ITP. In some preliminary studies these medicines found as safe and effective treatment option in children and adolescents. Bussel:amgen: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; GlaxoSmithKline: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cangene: Research Funding; Novartis: Consultancy, Research Funding; Genzyme: Consultancy; BiologicTx: Research Funding; Ligand: Consultancy, Research Funding; Eisai: Consultancy, Research Funding; Shionogi: Consultancy, Research Funding; momenta: Consultancy; Protalex: Consultancy; Symphogen: Consultancy.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1450-1450 ◽  
Author(s):  
James B. Bussel ◽  
John D. Grainger ◽  
Purificacion Garcia de Miguel ◽  
Jenny M. Despotovic ◽  
Franco Locatelli ◽  
...  

Abstract Background: Eltrombopag (EPAG), an oral thrombopoietin receptor agonist, is approved for treating thrombocytopenia in adults with chronic immune thrombocytopenia (ITP) with insufficient response to prior therapy. Pooled data from 2 similarly designed, randomized, double-blind, placebo (PBO)-controlled studies investigating safety and efficacy of EPAG in pediatric ITP are presented here. Methods: Subjects aged 1 to <18 years with a confirmed diagnosis of persistent or chronic ITP and a platelet count <30 Gi/L at day 1 were randomized 2:1 to EPAG or PBO and stratified by age: 12–17 years (Cohort 1), 6–11 years (Cohort 2), and 1–5 years (Cohort 3). Subjects could continue baseline ITP medications. After the PBO-controlled randomized phase, subjects were permitted to complete 17 or 24 weeks of treatment with open-label (OL) EPAG. Dose was adjusted based on platelet counts to a maximum of 75 mg daily. Results: A total of 174 subjects were enrolled in both studies; 171 received ≥1 dose of EPAG. 159 subjects were randomized (intent-to-treat population), and 157 received ≥1 dose of randomized study treatment (safety population). In the randomized period, 3 EPAG and 1 PBO subject discontinued study treatment, of which 2 EPAG and 1 PBO discontinued due to adverse events (AEs). In the OL-EPAG period, an additional 14 EPAG subjects discontinued study treatment, 6 due to AEs. Males comprised 47% of the EPAG and PBO groups and 20% and 24% were East Asians, respectively. Most subjects (93%) were diagnosed with ITP for ≥12 months, and 13% were receiving ITP medications at baseline. The majority of subjects (81%) received ≥2 prior ITP therapies. Most subjects (59%) had a baseline platelet count <15 Gi/L. All 9 (6%) splenectomized subjects were randomized to the EPAG group. Randomized Period A higher proportion of EPAG versus PBO subjects (62% vs 24%; P < 0.001) achieved a response with platelet counts ≥50 Gi/L at least once between weeks 1–6 (Cohort 1, 64% vs 11%; Cohort 2, 64% vs 27%; Cohort 3, 54% vs 36%, respectively). At each week, a higher proportion of EPAG subjects had a response versus PBO (Fig. 1). A lower proportion of EPAG subjects (13%) received rescue treatment compared with PBO subjects (31%; P = 0.009). The odds of having World Health Organization (WHO) bleeding grades 1–4 (0.19; P = 0.011) and clinically significant (WHO grades 2–4) bleeding (0.29; P = 0.007) were lower for EPAG versus PBO subjects. EPAG-Only Period Sustained reduction or discontinuation of baseline ITP medications, primarily corticosteroids, was achieved by 50% of subjects; 81% of subjects had a platelet count response at least once; 52% (n = 80/154) had a platelet count response for ≥50% of assessments; and 38% (n = 58/154) responded for ≥75% of assessments. For >13 of 24 weeks, 47% of subjects achieved responses (Fig. 2). The median average daily dose for EPAG-exposed patients in Cohorts 1, 2, and 3 were 64.0 mg (0.93 mg/kg), 57.6 mg (1.50 mg/kg), and 37.0 mg (2.02 mg/kg), respectively. AEs Similar proportions of subjects in the EPAG and PBO groups reported an AE during the randomization period. The most common AEs (≥10% of subjects) were headache, upper respiratory tract infection, and nasopharyngitis in the EPAG group, and headache, epistaxis, and vomiting in the PBO group. Serious AEs (SAEs) were reported in 8% of EPAG subjects versus 12% of PBO subjects. No SAEs were reported by >1 subject in either treatment group except epistaxis, which was reported by 2 subjects in the PBO group. No SAEs were common to both treatment groups. In the randomized period, an ALT elevation of ³3 x ULN occurred in 5 (4.7%) subjects in the EPAG group and no subjects in the PBO group. In the OL period, there were an additional 7 subjects with ALT ³3 x ULN. All elevations resolved either while still on treatment or after discontinuation of study treatment. Overall, the hepatobiliary laboratory findings were mostly mild, reversible, and not accompanied by impaired liver function. Fewer EPAG than PBO subjects reported bleeding AEs (17% vs 36%, respectively). No thromboembolic events were reported. Cataract events were experienced by 2 subjects who received EPAG; both had used corticosteroids and 1 had pre-existing cataracts. Conclusions: EPAG was safe and raised platelet counts in 62% of pediatric patients with persistent and chronic ITP during the randomized phase. Treatment with EPAG was well tolerated in both studies as evidenced by the low incidence of treatment discontinuations due to AEs. Disclosures Bussel: Shionogi: Membership on an entity's Board of Directors or advisory committees, Research Funding; Rigel: Honoraria; Novartis: Honoraria; Ligand: Membership on an entity's Board of Directors or advisory committees, Research Funding; Immunomedics: Research Funding; IgG of America: Research Funding; GlaxoSmithKline: Equity Ownership, Honoraria, Research Funding; Genzyme: Research Funding; Eisai, Inc.: Research Funding; Cangene: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria; Amgen: Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Symphogen: Membership on an entity's Board of Directors or advisory committees; Sysmex: Research Funding. Off Label Use: Eltrombopag is a thrombopoietin receptor agonist approved for the treatment of thrombocytopenia in adults with chronic ITP. Use in children and adolescents will be discussed.. Grainger:GlaxoSmithKline: Honoraria; Baxter: Honoraria, Research Funding; Amgen: Honoraria. Pongtanakul:GlaxoSmithKline: Research Funding. Komvilaisak:GlaxoSmithKline: I am an investigator on this study. Other. Sosothikul:CSL Behring: Research Funding; GlaxoSmithKline: Research Funding. Drelichman:GlaxoSmithKline: I am investigator on this study. Other. David:GlaxoSmithKline: Research Funding. Marcello:GlaxoSmithKline: Employment. Iyengar:GlaxoSmithKline: Employment. Chan:GlaxoSmithKline: Employment. Chagin:GlaxoSmithKline: Employment. Theodore:GlaxoSmithKline: Employment, Equity Ownership. Bakshi:GlaxoSmithKline: Employment, Equity Ownership. Bailey:GlaxoSmithKline: Employment, Equity Ownership.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3229-3229 ◽  
Author(s):  
Ivana N Micallef ◽  
Eric Jacobsen ◽  
Paul Shaughnessy ◽  
Sachin Marulkar ◽  
Purvi Mody ◽  
...  

Abstract Abstract 3229 Poster Board III-166 Introduction Low platelet count prior to mobilization is a significant predictive factor for mobilization failure in patients with non-Hodgkin's lymphoma (NHL) or Hodgkin's disease (HD) undergoing autologous hematopoietic stem cell (HSC) transplantation (auto-HSCT; Hosing C, et al, Am J Hematol. 2009). The purpose of this study is to assess the efficacy of HSC mobilization with plerixafor plus G-CSF in patients with concomitant thrombocytopenia undergoing auto-HSCT. Methods Patients who had failed successful HSC collection with any mobilization regimen were remobilized with plerixafor plus G-CSF as part of a compassionate use program (CUP). Mobilization failure was defined as the inability to collect 2 ×106 CD34+ cells/kg or inability to achieve a peripheral blood count of ≥10 CD34+ cells/μl without having undergone apheresis. As part of the CUP, G-CSF (10μg/kg) was administered subcutaneously (SC) every morning for 4 days. Plerixafor (0.24 mg/kg SC) was administered in the evening on Day 4, approximately 11 hours prior to the initiation of apheresis the following day. On Day 5, G-CSF was administered and apheresis was initiated. Plerixafor, G-CSF and apheresis were repeated daily until patients collected the minimum of 2 × 106 CD34+ cells/kg for auto-HSCT. Patients in the CUP with available data on pre-mobilization platelet counts were included in this analysis. While patients with a platelet count <85 × 109/L were excluded from the CUP, some patients received waivers and were included in this analysis. Efficacy of remobilization with plerixafor + G-CSF was evaluated in patients with platelet counts ≤ 100 × 109/L or ≤ 150 × 109/L. Results Of the 833 patients in the plerixafor CUP database, pre-mobilization platelet counts were available for 219 patients (NHL=115, MM=66, HD=20 and other=18.). Of these, 92 patients (NHL=49, MM=25, HD=8 and other=10) had pre-mobilization platelet counts ≤ 150 × 109/L; the median platelet count was 115 × 109/L (range, 50-150). The median age was 60 years (range 20-76) and 60.4% of the patients were male. Fifty-nine patients (64.1%) collected ≥2 × 109 CD34+ cells/kg and 13 patients (14.1%) achieved ≥5 × 106 CD34+ cells/kg. The median CD34+ cell yield was 2.56 × 106 CD34+ cells/kg. The proportion of patients proceeding to transplant was 68.5%. The median time to neutrophil and platelet engraftment was 12 days and 22 days, respectively. Similar results were obtained when efficacy of plerixafor + G-CSF was evaluated in 29 patients with platelet counts ≤ 100 × 109/L (NHL=12, MM=10, HD=3 and other=4). The median platelet count in these patients was 83 × 109/L (range, 50-100). The median age was 59 years (range 23-73) and 60.4% of the patients were male. The minimal and optimal cell dose was achieved in 19(65.5%) and 3(10.3%) patients, respectively. The median CD34+ cell yield was 2.92 × 106 CD34+ cells/kg. The proportion of patients proceeding to transplant was 62.1%. The median time to neutrophil and platelet engraftment was 12 days and 23 days, respectively. Conclusions For patients mobilized with G-CSF alone or chemotherapy ±G-CSF, a low platelet count prior to mobilization is a significant predictor of mobilization failure. These data demonstrate that in patients with thrombocytopenia who have failed prior mobilization attempts, remobilization with plerixafor plus G-CSF allows ∼65% of the patients to collect the minimal cell dose to proceed to transplantation. Thus, in patients predicted or proven to be poor mobilizers, addition of plerixafor may increase stem cell yields. Future studies should investigate the efficacy of plerixafor + G-CSF in front line mobilization in patients with low platelet counts prior to mobilization. Disclosures Micallef: Genzyme Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding. Jacobsen:Genzyme Corporation: Research Funding. Shaughnessy:Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Marulkar:Genzyme Corporation: Employment, Equity Ownership. Mody:Genzyme Corporation: Employment, Equity Ownership. van Rhee:Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3279-3279 ◽  
Author(s):  
Ann Janssens ◽  
Michael D. Tarantino ◽  
Robert Bird ◽  
Maria Gabriella Mazzucconi ◽  
Ralph Vincent V. Boccia ◽  
...  

Abstract Abstract 3279 Background: ITP is an autoimmune disorder characterized by increased platelet destruction and suboptimal platelet production. Romiplostim stimulates platelet production via the TPO-receptor, and is recommended for second- and third-line treatment of chronic ITP in adults. We report final data from a large prospective study of romiplostim in adults with ITP of varying duration and severity. Methods: Eligibility criteria were broad: patients ≥18 years of age, who had received prior ITP therapies (final protocol amendment: ≥1, previous amendments: ≥3), with low platelet counts (final amendment: ≤ 30 × 109/L, previous amendments: ≤ 10, ≤ 20 × 109/L) or experiencing uncontrolled bleeding. The only excluded comorbidities were: hematological malignancy, myeloproliferative neoplasms, MDS and bone marrow stem cell disorder. Romiplostim was initiated at 1 (final amendment) or 3 (previous amendments) μg/kg/week, with dose adjustments allowed to maintain platelet counts ≥50 × 109/L. Patients could continue on study until they had access to commercially available romiplostim. Rescue medications were allowed at any time; concurrent ITP therapies could be reduced when platelet counts were > 50 × 109/L. Primary endpoint was incidence of adverse events (AEs) and antibody formation. Secondary endpoint was platelet response, defined as either (1) doubling of baseline count and ≥ 50 × 109/L or (2) ≥20 × 109/L increase from baseline. Results: A total of 407 patients received romiplostim, 60% of whom were female. Median (Q1, Q3) time since ITP diagnosis was 4.25 (1.20, 11.40) years (maximum 57.1 years), with 51% of patients splenectomised and 39% receiving baseline concurrent ITP therapies. Seventy-one percent of patients completed the study, with requirement for alternative therapy and withdrawn consent the most common reasons for discontinuation (5% each). Median (Q1, Q3) on-study treatment duration was 44.29 (20.43, 65.86) weeks (maximum 201 weeks), with a total of 20,201 subject-weeks on study. Incidence and type of AEs were consistent with previous studies. The most common serious treatment-related AEs were cerebrovascular accident, headache, bone marrow reticulin fibrosis (with no evidence of positive trichrome staining for collagen and no evidence suggesting primary idiopathic myelofibrosis), nausea, deep vein thrombosis, hemorrhage and pulmonary embolism, with each reported in 2 of 407 (0.5%) patients. All other serious treatment-related AEs were each reported in one patient. Eighteen patients died; 3 deaths (hemolysis, intestinal ischaema, aplastic anemia) were considered treatment-related. No neutralizing antibodies to romiplostim or TPO were reported. Approximately 90% of patients achieved each of the platelet response definitions, regardless of splenectomy status. Overall, median (Q1, Q3) time to response was 2 (1, 4) weeks for response definition 1, and 1 (1, 3) week for response definition 2. Median (Q1, Q3) baseline platelet count was 14 (8, 21) × 109/L. After 1 week of treatment median (Q1, Q3) platelet count had increased to 42 (18, 101) × 109/L. From week 8 onwards, and excluding counts within 8 weeks of rescue medication use, median platelet counts were consistently above 100 × 109/L (range 101.0–269.5 × 109/L). Median (Q1, Q3) average weekly romiplostim dose was 3.62 (1.99, 6.08) μg/kg. Summary/conclusions: This is the largest prospective study in adult ITP reported to date. The data reported here are similar to those reported for previous romiplostim studies, with romiplostim able to safely induce a rapid platelet response in adult ITP patients with low platelet counts or bleeding symptoms. Romiplostim is an important, well-tolerated, treatment option for adult ITP patients, which significantly increases and maintains platelet counts. Adverse Event Subject Incidence Platelet Response Disclosures: Janssens: Amgen: Consultancy; Roche: Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Tarantino:Cangene corporation: Research Funding; Baxter: Research Funding; Talecris: Honoraria, Speakers Bureau; Up-to-date: Patents & Royalties; The Bleeding and Clotting Disorders Institute: Board Member. Bird:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Boccia:Amgen: Equity Ownership, Honoraria, Speakers Bureau. Lopez-Fernandez:Amgen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Kozak:Amgen: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Steurer:Amgen: Honoraria. Dillingham:Amgen Limited: Employment, Equity Ownership. Lizambri:Amgen: Employment, Equity Ownership.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3160-3160
Author(s):  
Ondine Walter ◽  
Agnès Ribes ◽  
Johanne Germain ◽  
Jean-Baptiste Rieu ◽  
Thibault Comont ◽  
...  

Abstract Introduction: Immune thrombocytopenia (ITP) is an autoimmune disease due to peripheral destruction but also impaired central production of platelets. Autoimmune reaction directed against megakaryocytes (MKs) has been described, and may explain morphological abnormalities of MKs observed in some patients with primary ITP. Thrombopoietin receptor agonists (TPO-RAs) are indicated as second-line treatments for ITP, but no predictive factors of response used in clinical routine practice has been demonstrated. The utility of systematic bone marrow smears (BMS) at ITP diagnosis is discussed. Howerer, it is usually recommended before second-line treatments. Two studies have suggested an association between MK abnormalities and response to corticosteroids in primary ITP, but none have investigated this association for TPO-RAs. This study aimed to investigate the association between MK abnormalities and response to TPO-RAs in adult patients with primary ITP. Methods: The source of population was the CARMEN registry. The CARMEN (Cytopénies Auto-immunes: Registre Midi-PyréneEN) registry is aimed at the prospective follow-up of all incident ITP adults in the French Midi-Pyrénées region (South-West of France, 3 million inhabitants) since June 2013. Each investigator follows all adult patients (aged ≥18 years) with incident ITP in routine visit or hospital stay. ITP was defined by international definition (platelet count &lt;100 x 10 9/L and exclusion of other causes of thrombocytopenia). The study population consisted in all patients included in the CARMEN registry between June 2013 and March 2018 with primary ITP, treated by TPO-RA and with a BMS before initiating TPO-RA. We excluded the patients with a number of MKs &lt;10 MK on the BMS. Morphological abnormalities were established based on literature and defined by consensus among 3 expert cytologists (AR, JBR and VDM). All MKs present on each smear were analyzed. MKs were categorized by the presence of dysplasia (monolobed MK and/or separated nuclei and/or microMKs), and according to their stage of maturation (basophilic, granular and thrombocytogenic). All patients' medical charts were reviewed by two experts in ITP (OW and GM) to determine the response to TPO-RAs. Response was defined by a platelet count between 30 and 100 G/L with at least a doubling of basal platelet count according to the international definition. In case of subsequent exposure to both TPORAs in a single patient, response was defined by response to at least one TPO-RA in the main analysis. We performed a subgroup analysis by TPORAs. Results: During the study period, 451 patients with incident ITP were included in CARMEN-registry. Among them, 105 had been treated by TPO-RAs, including 65 with BMS before the exposure to TPORA. We then excluded 20 patients with secondary ITP and 7 with less than 10 MKs on the BMS. We finally included 38 patients in the analysis. Median age at diagnosis was 71 years (interquartile range - IQR: 31 - 94) and 34.2% were women. Thirty-three patients were treated with eltrombopag, 17 with romiplostim including 13 who were exposed to both TPORAs. Thirty-four (89.4%) achieved response. The median number of MKs analyzed per patient was 137 (IQR: 50 - 265). All results are presented in Table 1. In the main analysis, there was no significant difference in the median percentage of dysplastic MKs in responders (4.0%, 95% confidence interval - CI: 2.3 - 6.4) and non-responders (4.5%, 95% CI: 0.7 - 7.1). There was a trend for a higher proportion of granular MKs (4.5%, 95% CI: 3 - 6) and basophilic MKs (30.1%, 95% CI: 21.9 - 39.1) in non-responders comparing to responders (granular: 2.0%, 95% CI: 0 - 4.1; basophilic: 21.3%, 95% CI: 11.4 - 40.7). Results were similar in the subgroup of patients treated with eltrombopag (data not shown; the low number of patients treated with romiplostim precluded any analysis). Conclusion: In this study, neither MK abnormalities nor the pattern of MK maturation stages were significantly associated with response to TPO-RAs. These results do not support a systematic bone marrow smear in patients with primary ITP to look for morphological predictive factors of response to TPO-RA. Figure 1 Figure 1. Disclosures Comont: AstraZeneca: Honoraria, Research Funding; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Takeda: Honoraria, Research Funding; Abbvie: Honoraria, Research Funding. Moulis: Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Grifols: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sobi: Membership on an entity's Board of Directors or advisory committees; Argenx: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2423-2423 ◽  
Author(s):  
James B. Bussel ◽  
Gregory Cheng ◽  
Mansoor N. Saleh ◽  
Sandra Vasey ◽  
Manuel Aivado ◽  
...  

Abstract Abstract 2423 Poster Board II-400 BACKGROUND: Eltrombopag (PROMACTA®; GlaxoSmithKline, Collegeville, PA, USA), an oral, small molecule, thrombopoietin receptor agonist, was recently approved in the United States for the treatment of patients with chronic immune thrombocytopenic purpura (ITP). Limited published data indicate that patients with chronic ITP experience thromboembolic events (TEEs) with a frequency of 3% to 6%. (Aledort, Am J Hematol, 2004; Bennett, Haematologica, 2008). OBJECTIVE: To evaluate the incidence of TEEs in patients with chronic ITP treated with eltrombopag and to determine if the occurrence of TEEs was associated with elevated platelet counts. METHODS: Data from 446 patients from 3 placebo-controlled eltrombopag studies (TRA100773A, TRA100773B, and RAISE) and 2 open-label studies (REPEAT and EXTEND) were analyzed. The frequency of TEEs or suspected TEEs before and after the first dose of study medication (placebo or eltrombopag) was examined across the program. Potential risk factors, including platelet counts proximal to the event, were evaluated in patients experiencing a TEE. RESULTS: Prior to the initiation of study medication (placebo or eltrombopag), 16/493 (3.2%) of the patients entering the program had a history of TEEs (one of these patients experienced 2 additional TEEs [TIA, MI] while on treatment with eltrombopag). Across the ITP clinical program, 17/446 patients treated with eltrombopag (3.8%) experienced 22 TEEs. No patient treated with placebo experienced a TEE. The patient-years (PYs) of exposure to study medication was approximately 14 times greater for patients treated with eltrombopag compared to placebo (eltrombopag 377 PYs; placebo 26 PYs). Most patients (13/17) experienced 1 TEE; 3 patients experienced 2, and 1 patient experienced 3 (2 TEEs were 6 months off-therapy). The most common TEEs were deep vein thrombosis (n=8) and pulmonary embolism (n=6). A total of 18/22 events were resolved or resolving at the time of this analysis; all patients experiencing a TEE had at least 1 risk factor for these events other than ITP (eg, use of IVIg [n=3], hospitalization with no prophylactic anticoagulation [n=4], oral corticosteroids [n=6]). The platelet counts proximal to the event ranged from 14,000/μL to 420,000/μL. The majority of patients had platelet counts below 150,000/μL (9; 53%) or between 150,000/μL and 400,000/μL (5; 29%); 2 had platelet counts above 400,000/μL and the platelet count in 1 was unknown. All 446 patients were categorized by the maximum platelet count achieved during treatment with eltrombopag (above normal [>400,000/μL], normal range [150–400,000/μL], below normal range [<150,000/μ]; Table 1). The majority of patients (14; 82%) experienced the TEEs at a platelet count lower than their maximum platelet count, while 3 patients (18%) experienced a TEE proximal to their maximum platelet count. CONCLUSION: TEEs occurred with eltrombopag. None occurred with placebo; however, the PYs of exposure was considerably less with placebo than with eltrombopag. The frequency of TEEs observed during eltrombopag treatment (3.8%) is similar to that reported in the literature and prior to enrollment in the eltrombopag program (3.2%). No discernible correlation has been observed between platelet count increases and TEEs, and these events do not appear to be associated with maximum platelet counts during treatment with eltrombopag. Disclosures: Bussel: Sysmex: Research Funding; Eisai, Inc: Research Funding; Ligand: Membership on an entity's Board of Directors or advisory committees, Research Funding; Immunomedics: Research Funding; Amgen: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cangene: Research Funding; GlaxoSmithKline: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genzyme: Research Funding; Scienta: Speakers Bureau; Shionogi: Membership on an entity's Board of Directors or advisory committees. Cheng:GlaxoSmithKline: Research Funding. Saleh:GlaxoSmithKline: Speakers Bureau; Amgen: Speakers Bureau. Vasey:GlaxoSmithKline: Employment. Aivado:GlaxoSmithKline: Employment. Brainsky:GlaxoSmithKline: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1158-1158
Author(s):  
W. Beau Mitchell ◽  
Michele N Edison ◽  
Mariana P Pinheiro ◽  
Nayla Boulad ◽  
Bethan Psaila ◽  
...  

Abstract Abstract 1158 INTRODUCTION: Immune thrombocytopenia (ITP) is typically characterized by increased platelet destruction and reduced platelet production. Eltrombopag and Romiplostim are thrombopoietin receptor (TPO-R) agonists that are known to increase platelet counts in patients with ITP by stimulating thrombopoiesis. Platelets also express TPO-R on their surface, but it is unknown whether the thrombopoietin mimetics (TPO-M) have a direct effect on the circulating platelets. Although controversial, in a very small number of ITP patients, TPO-M agents may increase platelet counts in 2–5 days, earlier than would be expected from de novo megakaryocytopoiesis. Platelet survival is hypothesized to be mediated by two molecular intermediates in an apoptotic pathway, Bcl-xL and Bak. Bcl-xL/Bak protein expression in megakaryocytes is regulated in part by TPO-mediated activation of Akt pathways through Jak2 and Stat5. We hypothesized that an increase in platelet count in the first week of treatment might be mediated by TPO-R signaling, resulting in decreased platelet apoptosis. This study explored whether Eltrombopag or Romiplostim treatment has anti-apoptotic effects on platelets of patients with ITP. METHODS: Following a treatment wash out period, 75 mg of Eltrombopag once daily or 10 mcg/kg weekly of Romiplostim was initiated for 2 weeks. Blood counts were measured on days 1, 3, 5, 8, 10, 12, and 15. Platelet function and survival was assessed on days 1, 8, and 15 by: immature platelet fraction (IPF), glycocalicin index, Bcl-xL inhibitor (ABT-737) assay, measurement of Bcl-xL by western blot, measurement of several members of the Bcl-xL Akt mediated, apoptotic pathway by flow cytometry (FACS), bleeding score, measurement of thrombin-anti-thrombin complexes (TATs), and quantification of microparticles. RESULTS: Eight of 10 patients responded to treatment with Eltrombopag with a platelet count ≥ 50,000/μL, and 6 of the 8 responders at least doubled their counts during the 2 weeks of treatment. All 3 patients treated with Romiplostim responded with platelet count ≥ 50,000/μL. In both treatment groups there was a significant increase in median platelet count (p<0.001), median large platelet count (p<0.01), and median absolute IPF (A-IPF, p<0.01), while there was no significant change in median % IPF. The dose of ABT-737 required to kill half of the platelets in the sample (IC50) in the Eltrombopag group was lower in patients at day 1 than in non-ITP controls, and there was an increase in resistance to apoptosis between days 1 and 8, but these changes did not reach statistical significance. Between days 8 and 15 the IC50 declined to pre-treatment levels. In the Romiplostim group there was no significant difference in IC50 between the control and the patients over the 2 weeks of study. There was no significant correlation between the platelet counts and the IC50 values. FACS analysis of members of the AKT signal transduction pathway revealed increased activation of each of the markers between days 1 and 8, followed by a decrease between days 8 and 15. The levels of Bcl-xL and phosphor-AKT(308) decreased from day 1 to day 15. The other lab tests are pending. DISCUSSION: Because the A-IPF increased by less than the platelet increase and because the lifespan of the A-IPF is not known, it is unclear if the platelet count increase is solely a result of increased platelet production. Platelet lifespan may be enhanced by Eltrombopag treatment as there was a parallel albeit transient increase in AKT activation markers and platelet apoptosis resistance in the Eltrombopag group. Treatment with Romiplostim did not appear to affect apoptosis resistance although it did result in transient AKT activation. Our data suggest that platelets are more resistant to apoptosis when the levels of anti-apoptotic factors (eg. PTEN, Phospho-GSK3β) involved in the AKT/Bcl-xL pathway are greatest despite a concomitant increase in pro-apoptotic factors (eg. Bak, Bax). Since both the increased AKT activation and apoptotic resistance returned to baseline at day 15, megakaryocytes and platelets already present at the start of treatment may respond differently than those generated de novo in the presence of TPO mimetics. Disclosures: Bussel: Portola: Consultancy; Eisai: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; GlaxoSmithKline: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Cangene: Research Funding; Genzyme: Research Funding; Immunomedics: Research Funding; Ligand: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Shionogi: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Sysmex: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4667-4667
Author(s):  
Ole Halfdan Larsen ◽  
Jesper Stentoft ◽  
Deepti Radia ◽  
J∅rgen Ingerslev ◽  
Benny S∅rensen

Abstract Abstract 4667 Introduction: Primary immune thrombocytopenia (ITP) is an autoimmune disorder characterized by a low platelet count and an increased risk of bleeding. Hemostatic treatment modalities, bypassing the need for platelet transfusion, would be desirable for control of serious acute bleeds in patients with ITP. This study aimed at (i) performing a thorough characterization of the coagulopathy of ITP, (ii) investigate new ways to obtain acute correction of the coagulopathy performing in vitro experiments with recombinant factor VIIa (rFVIIa, NovoSeven®), fibrinogen (RiaSTAP®), and the combination of rFVIIa and fibrinogen, and finally (iii) investigate the correlation of the hemostatic response to the baseline platelet counts of the ITP patients. We challenged the hypothesis that rFVIIa combined with fibrinogen concentrate can correct whole blood (WB) clot formation in patients suffering from ITP even at very low platelet counts. Methods: Blood from 12 ITP patients and 15 healthy controls was drawn into 3.2% citrate containing corn trypsin inhibitor 18.3μg mL−1 to inhibit artificial contact activation. The WB (mean platelet count 22 × 109L−1 (range 0–42)) was spiked in vitro with buffer (control), fresh donor platelets (+40×109 L−1), rFVIIa (1 or 4μg mL−1), or fibrinogen (1 or 3mg mL−1) as well as the combination of rFVIIa and fibrinogen. Dynamic WB coagulation profiles were recorded by ROTEM® Thromboelastometry using activation with tissue factor (0.03pM) and re-calcification. Parameters of clot initiation (clotting time, CT), clot propagation (maximum velocity, MaxVel) as well as clot termination (maximum clot firmness, MCF) were evaluated. Thrombin generation in “platelet-rich” ITP plasma was evaluated using calibrated automated thrombography. Overall differences between groups were evaluated by paired and unpaired t-tests as appropriate. Simple linear regression analyses were performed using the differences observed after addition of the various interventions (intervention – baseline) as the dependent variable (y) and the platelet count as the independent variable (x). The slope was used to evaluate dependency of the hemostatic response on the platelet count, whereas the intercept was used to evaluate the hemostatic response at very low platelet counts. A p-value less than 0.05 was considered statistically significant. Results: Compared with healthy controls the WB coagulation profiles of the ITP patients were characterized by a prolonged CT (mean: 1490 vs. 941s, p<0.001) as well as a markedly reduced MaxVel (3.4 vs. 9.7mm×100s−1, p<0.001) and MCF (38.2 vs. 49.4mm, p=0.01). Fibrinogen showed no positive hemostatic effect. Recombinant FVIIa reduced the CT (744s, p<0.001) and increased the MaxVel (6.28mm×100s−1, p<0.001) whereas no change was observed in the MCF. Thrombin generation in “platelet-rich” plasma supported the findings in WB. The improvement in CT following addition of rFVIIa was independent of the platelet count (p-values > 0.45) and the intercept showed a significant improvement at very low platelet counts (1μg mL−1: −643s, p<0.001; 4μg mL−1: −811s, p<0.001). In contrast, the increase in MaxVel after addition of rFVIIa was highly dependent on the platelet count (1μg mL−1: R2 = 0.81, p < 0.001; 4μg mL−1: R2 = 0.86, p < 0.001) and the intercept was not significant (1μg mL−1: 0.05mm×100s−1 p=0.87; 4μg mL−1: 0.54 mm×100s−1 p=0.15). The combination of fibrinogen and rFVIIa revealed a synergistic effect also showing an increased MCF (50.7mm) in addition to a reduced CT (794s) and improved MaxVel (7.9 mm×100s−1) displaying larger effects than following fresh donor platelet substitution (CT 1164s; MaxVel 6.96mm×100s−1; MCF 49.6mm). Furthermore, rFVIIa together with fibrinogen also showed a significant response at very low platelet counts in all parameters (Intercept: CT −788s, MaxVel 3.3mm×100s−1, MCF 13.9mm, p-values<0.004) Conclusions: Data suggest that rFVIIa combined with fibrinogen can correct the coagulopathy of ITP even at very low platelet counts, and may be an alternative to platelet transfusion. Clinical trials are needed to further investigate if this new treatment modality holds the potential to serve as an effective acute treatment option in ITP. Disclosures: Off Label Use: Recombinant activated factor VII (NovoSeven) and fibrinogen concentrate (RiaSTAP). In vitro data suggesting a haemostatic effect in primary immune thrombocytopenia will be presented. S∅rensen:Novo Nordisk: Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Baxter: Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; CSL Behring: Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bayer: Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; SOBI: Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pentapharm: Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; Grifols: Research Funding; LFB: Research Funding; Octapharma: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4641-4641
Author(s):  
Korinne Hamilton ◽  
Lisa J. Toltl ◽  
Grace Wang ◽  
Naushin S Sholapur ◽  
Julie Carruthers ◽  
...  

Abstract Abstract 4641 Background: Thrombopoietin receptor agonists such as romiplostim have been shown to increase platelet counts in patients with immune thrombocytopenia (ITP) and reduce the need for concomitant therapies. However, their effect on the utilization of intravenous immune globulin (IVIG) has not been examined in the post-marketing or ‘real world’ setting. The objective of this before-after study was to determine the effect of romiplostim on the utilization of IVIG outside of clinical trials. We determined the completeness of our dataset in this multi-center retrospective study. Methods: The charts of patients with ITP from 4 sites in Canada who had received romiplostim were reviewed until January 31, 2012. Patients were 18 years or older, had ITP according to ASH criteria and had at least 1 full year of data available prior to the first dose of romiplostim. A web-based electronic data capture system was used to collect platelet counts, IVIG use, bleeding as assessed by site and severity using an ITP-specific bleeding assessment tool, treatments and hospitalizations before and after the start of romiplostim treatment. IVIG use was compared after normalizing for the duration of time in observation. A pilot exercise was performed to optimize the quality of data extraction from charts. Results: Twenty-nine patients with ITP were included (15 females; median age 54 years, interquartile range [IQR] 45 – 63). Median platelet counts increased from 28 x109/L (IQR, 12 – 58) before romiplostim to 124 x109/L (IQR, 79 – 182) after romiplostim. The proportion of patients requiring other ITP treatments decreased from 25/29 (86%) to 17/29 (59%); the proportion of patients with any bleeding decreased from 24/29 (83%) to 11/29 (38%); and the proportion of patients with grade 2 or higher bleeding decreased from 13/29 (45%) to 6/29 (21%) after romiplostim. Of 29 patients, 16 (55%) had received IVIG before receiving romiplostim. IVIG use over time decreased in 14 of 16 (88%) patients, including 4 (25%) who did not require any IVIG after romiplostim administration. Two splenectomized patients with refractory ITP had received more IVIG in the period after romiplostim was initiated: One patient had discontinued romiplostim because of no platelet count response and subsequently developed intra-cerebral hemorrhage requiring multiple IVIG treatments; the other patient developed cyclical thrombocytopenia. Three additional patients received 1–3 infusions of IVIG only during the period after romiplostim. Of 128 IVIG infusion episodes, 106 were considered to have sufficient documentation since the dose, date of administration and preceding platelet count (within 1 week) were recorded in the chart. Conclusion: In this real-world cohort of patients with ITP, the proportion of patients who required IVIG decreased after starting romiplostim. A few refractory patients required more IVIG in the period after romiplostim. Retrospective data collection of treatment start and end dates and bleeding severity was limited. Disclosures: Arnold: Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; GlaxoSmithKline: Membership on an entity's Board of Directors or advisory committees, Research Funding; Hoffman-LaRoche: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 680-680 ◽  
Author(s):  
George R. Buchanan ◽  
Lisa Bomgaars ◽  
James B. Bussel ◽  
Diane J. Nugent ◽  
David J. Gnarra ◽  
...  

Abstract Abstract 680 Introduction: ITP is an autoimmune disorder characterized by thrombocytopenia due to accelerated destruction as well as suboptimal platelet production. Childhood ITP is most commonly an acute illness; however, chronic ITP (duration > 6 months) develops in 20%–30% of ITP cases. Romiplostim, a peptibody protein designed to increase platelet production, is approved for treating chronic ITP in adults. The objective of this study was to evaluate the safety and efficacy of romiplostim in the treatment of thrombocytopenia in children with chronic ITP. Patients and Methods: ITP patients aged 12 months to <18 years with persistent severe thrombocytopenia for at least six months before enrollment (mean of 2 platelet counts ≥ 30 × 109/L at baseline) were included in this study. Patients were randomized (3:1) to receive romiplostim or placebo and stratified by age: 12 months - <3 years (N=4), 3 - <12 years (N=8), and 12 - <18 years (N=8). Treatment for a 12 week period was followed by a 4 week pharmacokinetic (PK) assessment period for responding patients (those who achieved a platelet count of >20 × 109/L above baseline for 2 consecutive weeks without rescue therapy at any point during the treatment period). Treatment was initiated at 1 μg/kg once weekly by subcutaneous injection. The dose was adjusted in 2 μg/kg increments every two weeks, to a maximum dose of 10 μg/kg/week based on weekly platelet counts. The incidence of adverse events (AEs) during the 12-week treatment period and the number of patients achieving platelet counts >50 × 109/L for 2 consecutive weeks during the treatment period, or achieving an increase in platelet count >20 × 109/L above baseline for 2 consecutive weeks during the treatment period was recorded. Results: A total of 22 (romiplostim, 17; placebo, 5) patients were randomized; 16 (73%) were boys and 6 (27%) were girls. Eight patients had undergone splenectomy. The mean age was 9.5 (SD: 5.1) years, with 4 subjects aged 12 months - <3 years, 10 aged 3 - <12 years, and 8 aged 12 - <18 years. The median baseline platelet count was 13 × 109/L (range 2 to 29 × 109/L) and the median duration of ITP was 2.4 years (range 0.6 to 14 years). All patients completed the study. Sixteen of 17 patients in the romiplostim arm (94%) and 5/5 in the placebo arm (100%) had at least 1 AE during the treatment period. The most common AEs were (romiplostim, placebo, respectively) headache (35%, 40%), epistaxis (35%, 20%), cough (12%, 40%), and vomiting (12%, 40%). Serious AEs were experienced by 1 patient in the romiplostim arm (moderate influenza and sepsis) and none in the placebo arm. AEs considered to be treatment related were reported for 3 (18%) and 1 (20%) subjects in the romiplostim and placebo arms, respectively; none of the treatment-related AEs were serious or of ≥3 grade severity. No patients died during the study and none tested positive for neutralizing antibodies to romiplostim or thrombopoietin. The same group of patients in the romiplostim-treated arm (15/17, 88.2%, 95% CI: 63.6%, 98.5%) achieved both efficacy endpoints during the treatment period. The median platelet count in the romiplostim-treated arm after 6 weeks of treatment was ≥50 × 109/L. The median weekly platelet count in the placebo arm remained stable at approximately 10 × 109/L. None of the placebo-treated patients achieved either platelet count endpoint. Rescue medication was administered to 2/17 (12%) of romiplostim- and 2/5 (40%) of placebo-treated patients during the 12 week treatment period. Twelve (71%) and 2 (40%) subjects in the romiplostim and placebo arms, respectively, experienced bleeding events. The majority of bleeding events (15/17) in the romiplostim arm occurred in the first 6 weeks of treatment. Most bleeding events (14/17) in the romiplostim arm and all bleeding events in the placebo arm occurred when the platelet count was < 30 × 109/L. A total of 14 patients treated with romiplostim entered the PK assessment period. The romiplostim serum concentration results were not different among the 3 age cohorts. The mean weekly dose of romiplostim in the treatment period was 3.4 (SD: 1.6) μg/kg. Conclusion: Treatment with romiplostim appeared to be well tolerated in pediatric ITP patients, with no new safety concerns observed in this study as compared to adults with chronic ITP. Romiplostim was effective in treating thrombocytopenia in children with chronic ITP. Disclosures: Buchanan: Amgen Inc.: Research Funding. Off Label Use: Use of romiplostim, a thrombopoietin mimetic, in treatment of thrombocytopenia in pediatric ITP patients. . Bomgaars:Novartis: Research Funding. Bussel:Eisai, Inc: Research Funding; Sysmex: Research Funding; Shionogi: Membership on an entity's Board of Directors or advisory committees; Ligand: Membership on an entity's Board of Directors or advisory committees, Research Funding; Immunomedics: Research Funding; Amgen: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; GlaxoSmithKline: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cangene: Research Funding; Genzyme: Research Funding; Scienta: Speakers Bureau. Nie:Amgen Inc.: Employment, Equity Ownership. Eisen:Amgen Inc.: Employment, Equity Ownership. Berger:Amgen Inc.: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1076-1076 ◽  
Author(s):  
James B. Bussel ◽  
Alexandra Kruse ◽  
Caroline Kruse ◽  
Jody Shy ◽  
Kavita Aggarwal ◽  
...  

Background: Immune thrombocytopenia (ITP) is an autoimmune disorder causing reduced platelet counts <100,000/µL, with potential bleeding consequences and reduced quality of life. Treatment is generally reserved for adults with platelet counts <30,000/µL. Methods: ITP patients from the Platelet Disorder Support Association were recruited to complete a one-time cross-sectional survey online. Eligible adults from the United States self-reported that they had been diagnosed with ITP and received at least 1 treatment. Patients completed a 30-45-minute online survey about demographics, diagnosis experience, symptoms, disease management and treatment. Results: Seventy-six patients completed the survey. Two-thirds had been diagnosed at least 10 years previously. Events leading to diagnosis were petechiae (21%), general check-up (19%), bleeding events (18%), and bruising (16%). Patients with ITP felt well informed about ITP (87.5% reported a score ≥5 on a 7-point Likert scale with 7 being highly knowledgeable) and 97% knew their current platelet count. At the time of diagnosis, platelet counts were < 10 x 109/L in 47% and 10 - 30 x 109/L in 27%. At the time of survey response, platelet count was < 30 x 109/L in 4.62% of participants; 47.69% of respondents had platelet counts > 100 x 109/L. Using a Likert scale (7 = very strongly agree, 1 = very strongly disagree), 58% of patients reported a score ≥5 that ITP-related fatigue interfered with their work, family, or social life. Prior to being treated, 35% reported fatigue daily and 13% reported it twice a week. Despite treatment, a similar proportion reported fatigue daily (39%) or twice a week (16%). Overall, the results of the survey did not suggest that bleeding was a concern for most patients: 59% reported a score ≤3 suggesting that bleeding does not interfere with their work, family or social life. Additionally, only 3% of patients reported that they experienced bleeding related to their ITP daily or twice weekly prior to treatment. However, fear of bleeding interfered with work, family or social life in 47% of patients with score ≥5 ; in contrast an equal number, 47%, reported a score ≤3. 45% of respondents underwent splenectomy without clinical improvement; an additional 31% were offered but declined surgery. Almost 90% of patients had prior treatment with steroids: 72% prednisone first and 15% dexamethasone first. Most had received rituximab (72%) and eltrombopag (55%); 40% received romiplostim. Additional information regarding aspects related to treatment will be presented, including sequencing and preferences associated with different therapies. Conclusions: This survey demonstrates some of the effects of fatigue, bleeding, and treatment on the lives of patients with ITP. On the one hand, almost half the patients had failed splenectomy, although currently very few patients undergo this procedure. Thus those taking the survey were not "random" ITP patients but may likely represent an atypical group that is refractory to treatment or dissatisfied with the course of their ITP despite half the patients having normal platelet counts at the time of the survey. In the course of their ITP, patients received a variety of treatments beyond steroids and results for side effects experienced and satisfaction with treatment will be analyzed and presented. The most surprising finding was that, even in those in whom treatment raised the platelet count, fatigue was not always alleviated. These issues and others remain to be clarified as we further unravel the complexity of ITP. Disclosures Bussel: Tranquil: Honoraria, Membership on an entity's Board of Directors or advisory committees; UCB: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Regeneron: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Kezar Life Sciences: Consultancy, Membership on an entity's Board of Directors or advisory committees; Physician Education Resource: Speakers Bureau; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Momenta Pharmaceuticals: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Dova Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; GSK: Honoraria, Membership on an entity's Board of Directors or advisory committees; argenx: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; RallyBio: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Rigel: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; 3S Bio: Speakers Bureau. Kruse:Novartis: Consultancy; UCB: Honoraria; Amgen: Research Funding; Argenx: Research Funding; Dova: Research Funding; Novartis: Research Funding; Momenta: Research Funding; Principia: Research Funding; Octapharma: Research Funding; CSL Behring: Research Funding; UCB: Research Funding. Aggarwal:Dova Pharmaceuticals: Employment. Vredenburg:Dova Pharmaceuticals: Employment, Other: Shareholder. McCrae:Dova Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Pfizer Pharmaceutical: Membership on an entity's Board of Directors or advisory committees; Rigel Pharmaceutical: Membership on an entity's Board of Directors or advisory committees; Sanofi Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document