scholarly journals The mechanism of thrombin-induced platelet factor 4 secretion

Blood ◽  
1980 ◽  
Vol 55 (4) ◽  
pp. 661-668 ◽  
Author(s):  
MH Ginsberg ◽  
L Taylor ◽  
RG Painter

We have measured thrombin-induced secretion of platelet factor 4 antigen (PF4) and simultaneously followed its intracellular translocation by immunofluorescence. In permeable resting platelets, speckled intracellular immunofluorescent staining for PF4 was observed. Addition of thrombin to washed platelets at 22 degrees C resulted in secretion of PF4 and formation of large (approximately 0.5 micrometer) immunofluorescent masses. These masses moved to the cell periphery during secretion and were virtually absent at the conclusion of secretion. Ultrastructural examination of thrombin-treated platelets revealed vacuoles corresponding in size, shape, and time of occurrence to the large immunofluorescent masses of PF4. These vacuoles contained PF4 by immunoferritin staining of frozen thin sections; they therefore appear to represent the ultrastructural counterpart of the large PF4 masses. When intact cells were stained for PF4 after thrombin addition, only 5.6% of the large masses stained. Thus, during secretion, PF4 antigen is consolidated into large closed pools that appear as vacuoles in the electron microscope.

Blood ◽  
1980 ◽  
Vol 55 (4) ◽  
pp. 661-668 ◽  
Author(s):  
MH Ginsberg ◽  
L Taylor ◽  
RG Painter

Abstract We have measured thrombin-induced secretion of platelet factor 4 antigen (PF4) and simultaneously followed its intracellular translocation by immunofluorescence. In permeable resting platelets, speckled intracellular immunofluorescent staining for PF4 was observed. Addition of thrombin to washed platelets at 22 degrees C resulted in secretion of PF4 and formation of large (approximately 0.5 micrometer) immunofluorescent masses. These masses moved to the cell periphery during secretion and were virtually absent at the conclusion of secretion. Ultrastructural examination of thrombin-treated platelets revealed vacuoles corresponding in size, shape, and time of occurrence to the large immunofluorescent masses of PF4. These vacuoles contained PF4 by immunoferritin staining of frozen thin sections; they therefore appear to represent the ultrastructural counterpart of the large PF4 masses. When intact cells were stained for PF4 after thrombin addition, only 5.6% of the large masses stained. Thus, during secretion, PF4 antigen is consolidated into large closed pools that appear as vacuoles in the electron microscope.


1984 ◽  
Vol 98 (2) ◽  
pp. 748-760 ◽  
Author(s):  
P E Stenberg ◽  
M A Shuman ◽  
S P Levine ◽  
D F Bainton

The redistribution of beta-thromboglobulin (beta TG), platelet Factor 4 (PF4), and fibrinogen from the alpha granules of the platelet after stimulation with thrombin was studied by morphologic and immunocytochemical techniques. The use of tannic acid stain and quick-freeze techniques revealed several thrombin-induced morphologic changes. First, the normally discoid platelet became rounder in form, with filopodia, and the granules clustered in its center. The granules then fused with one another and with elements of the surface-connected canalicular system (SCCS) to form large vacuoles in the center of the cell and near the periphery. Neither these vacuoles nor the alpha granules appeared to fuse with the plasma membrane, but the vacuoles were connected to the extracellular space by wide necks, presumably formed by enlargement of the narrow necks connecting the SCCS to the surface of the unstimulated cell. The presence of fibrinogen, beta TG, and PF4 in corresponding large intracellular vacuoles and along the platelet plasma membrane after thrombin stimulation was demonstrated by immunocytochemical techniques in saponin-permeabilized and nonpermeabilized platelets. Immunocytochemical labeling of the three proteins on frozen thin sections of thrombin-stimulated platelets confirmed these findings and showed that all three proteins reached the plasma membrane by the same pathway. We conclude that thrombin stimulation of platelets causes at least some of the fibrinogen, beta TG, and PF4 stored in their alpha granules to be redistributed to their plasma membranes by way of surface-connected vacuoles formed by fusion of the alpha granules with elements of the SCCS.


1983 ◽  
Vol 31 (7) ◽  
pp. 905-910 ◽  
Author(s):  
T D Pham ◽  
K L Kaplan ◽  
V P Butler

To determine the storage site of platelet fibrinogen and of platelet factor 4 (PF4) in human platelets by immunoelectron microscopic techniques, washed human platelets were briefly exposed to Karnovsky's fixative and embedded in water-soluble Durcupan. Thin sections of platelets were exposed to Fab fragments of rabbit anti-human fibrinogen or of goat anti-human PF4, followed by a peroxidase conjugate of Fab fragments of antibodies to rabbit immunoglobulin (Ig) G or to goat IgG. The technique enabled preservation of the antigenic determinants of the platelet proteins, accessibility of Fab fragments to the platelet proteins, and maintenance of the ultrastructural integrity of the platelets. Using this approach, it was directly demonstrated that platelet fibrinogen and PF4 are stored in the alpha-granules of human platelets.


1974 ◽  
Vol 16 (2) ◽  
pp. 261-299 ◽  
Author(s):  
H. G. DAVIES ◽  
A. B. MURRAY ◽  
M. E. WALMSLEY

Previously it was shown that when condensed chromatin from several different types of cell is stained with uranyl-lead and examined in thin sections in the electron microscope, the stain is distributed into a dot-dash pattern arising from threads, with lesser-staining intermediate areas. We now show that when a section through chicken erythrocyte chromatin is stained with ethanolic phosphotungstic acid (PTA) the stain distribution is homogeneous. This shows that the lesser-staining regions after uranyl-lead, cannot be an overlap artifact. We conclude that the stains and hence the molecules in chromatin are distributed between 2 phases, an o- and an e-phase, so called because the structural units in chromatin are arranged in an orderly way at the surface of the nucleus and give rise to oddly (o) and evenly (e) numbered bands. Measurements of electron density per unit thickness, proportional to the number of stain molecules per unit volume, are made in thin sections through erythrocytes and reticulocytes from adult hen, 4-day-old chicks and 17-day embryos. The results indicate differences in the packing of the molecules in chromatin and further show that the e-phase is quite likely to have a higher DNA to protein ratio than the o-phase. After uranyl-lead stain the visibility of the dot-dash pattern in cells from adult hen is relatively low due, we propose, to closer packing. In micrographs through condensed chromatin treated with uranyl-lead the eye selects out only the densely stained dots and dashes, width 17 nm. When erythrocyte chromatin is partially or completely disrupted in various ways, threads 25-30 nm then become visible. We propose that condensed chromatin in intact cells contains structural units which consist of a central element, width 17 nm previously referred to as the unit thread, forming the e-phase, surrounded by a cylindrical shell forming the o-phase. This socalled superunit thread is similar in width, about 25-30 nm, to that reported by other workers in preparations of chromosomes spread on water surfaces. The hypothesis therefore helps explain what appeared to be discrepancies in thread dimensions. Certain other ultrastructural features of erythrocyte nuclei are also reported which are either pertinent to the general aim of this study, namely the way in which nucleoproteins fold up in chromosomes, or to biochemical studies, to be reported shortly, in which attempts are made to locate the proteins removed from isolated erythrocyte nuclei during subsequent washing in salt solutions.


1984 ◽  
Vol 72 (1) ◽  
pp. 275-294
Author(s):  
J. Gambino ◽  
J.A. Weatherbee ◽  
R.H. Gavin ◽  
R.A. Eckhardt

A proteinaceous cytoskeletal network is present in nucleated erythrocytes, which is obscured ultrastructurally in whole cells due to the presence of haemoglobin. Lysis of Xenopus erythrocytes in solutions containing Triton X-100 reveals a cytoskeleton that contains a centrally positioned nucleus, which is linked to the cell surface-associated cytoskeleton by intermediate filaments. The marginal band microtubules are also preserved in these structures. In addition, a single or a pair of perinuclear centrioles is frequently observed in thin sections. These structures are surrounded by a mass of intermediate filaments and fibrogranular material. In contrast to the centrioles in invertebrate erythrocytes those in Xenopus erythrocytes are not associated with the marginal band. Cytonuclear skeletons were obtained by DNase I digestion and subsequent high-salt extraction of cytoskeletons. The resulting structures were chromatin-depleted and consisted of a nuclear lamina that was maintained in the same overall shape and position as that of intact nuclei. With the exception of the marginal band, the remaining cytoskeletal elements persisted after these treatments. Although marginal bands were not detectable by electron microscopy, the cytonuclear skeletons contained roughly the same amount of tubulin as cytoskeletons, as indicated by immunoblotting with affinity-purified anti-tubulin antibodies. When intact erythrocytes were exposed to the ionophore A23187 in the presence of calcium, the cell shape and centric nuclear position were altered. Nuclear dislodgement may be attributable to the disruption of intermediate filament associations with the subsurface cytoskeletal shell. Indirect immunofluorescent staining of cytoskeletons lysed in buffers containing either EGTA or calcium indicates that in the absence of calcium, the intermediate filament network extends to the cell periphery. In structures lysed in calcium, however, the filaments are restricted to the vicinity of the nucleus.


Author(s):  
E. B. Masurovsky ◽  
H. H. Benitez ◽  
M. R. Murray

Recent light- and electron microscope studies concerned with the effects of D2O on the development of chick sympathetic ganglia in long-term, organized culture revealed the presence of rod-like fibrillar formations, and associated granulofibrillar bodies, in the nuclei of control and deuterated neurons. Similar fibrillar formations have been reported in the nuclei of certain mammalian CNS neurons; however, related granulofibrillar bodies have not been previously described. Both kinds of intranuclear structures are observed in cultures fixed either in veronal acetate-buffered 2%OsO4 (pH 7. 4), or in 3.5% glutaraldehyde followed by post-osmication. Thin sections from such Epon-embedded cultures were stained with ethanolic uranyl acetate and basic lead citrate for viewing in the electron microscope.


Author(s):  
Roberta M. Bruck

An unusual structure in the cochlea is the spiral limbus; this periosteal tissue consists of stellate fibroblasts and collagenous fibers embedded in a translucent ground substance. The collagenous fibers are arranged in vertical columns (the auditory teeth of Haschke). Between the auditory teeth are interdental furrows in which the interdental cells are situated. These epithelial cells supposedly secrete the tectorial membrane.The fine structure of interdental cells in the rat was reported by Iurato (1962). Since the mouse appears to be different, a description of the fine structure of mouse interdental cells' is presented. Young adult C57BL/6J mice were perfused intervascularly with 1% paraformaldehyde/ 1.25% glutaraldehyde in .1M phosphate buffer (pH7.2-7.4). Intact cochlea were decalcified in .1M EDTA by the method of Baird (1967), postosmicated, dehydrated, and embedded in Araldite. Thin sections stained with uranyl acetate and lead citrate were examined in a Phillips EM-200 electron microscope.


Author(s):  
J. Temple Black

Since its introduction by Fernandez-Moran, the diamond knife has gained wide spread usage as a common material for cutting of thin sections of biological and metallic materials into thin films for examination in the transmission electron microscope. With the development of high voltage E.M. and scanning transmission E.M., microtomy applications will become increasingly important in the preparation of specimens. For those who can afford it, the diamond knife will thus continue to be an important tool to accomplish this effort until a cheaper but equally strong and sharp tool is found to replace the diamond, glass not withstanding.In Figs. 1 thru 3, a first attempt was made to examine the edge of a used (β=45°) diamond knife by means of the scanning electron microscope. Because diamond is conductive, first examination was tried without any coating of the diamond. However, the contamination at the edge caused severe charging during imaging. Next, a thin layer of carbon was deposited but charging was still extensive at high magnification - high voltage settings. Finally, the knife was given a light coating of gold-palladium which eliminated the charging and allowed high magnification micrographs to be made with reasonable resolution.


Author(s):  
T. Guha ◽  
A. Q. Siddiqui ◽  
P. F. Prentis

Tilapia, Oreochromis niloticus, is an economically important fish in Saudi Arabia. Elucidation of reproductive biology of this species is necessary for successful breeding program. In this paper we describe fine structure of testicular sperm cells in O, niloticus.Testes from young adult fish were fixed in gluteraldehyde (2%) and osmium tetroxide (1%), both in cacodyl ate buffer. Specimens were processed in the conventional way for electron microscopy and thin sections of tissues (obtained by cutting the blocks with a diamond knife) were stained by ura- nyl acetate and lead citrate. These were examined in a Carl Zeiss electron microscope operated at 40 kV to 60 kV. Sperm cells were obtained from testes by squeezing them in cacodyl ate buffer. They were fixed in gluteraldehyde (2%) in the same buffer, air dried, gold coated and then examined in a Philips scanning electron microscope (SEM) operated at 25kV.The spermatozoon of O. niloticus is consisting of head, midpiece and tail (Fig. 1).


Author(s):  
J. Edie

In TEM image formation, the observed contrast variations within thin sections result from differential electron scattering within microregions of varying mass thickness. It is possible to utilize these electron scattering properties to obtain objective information regarding various specimen parameters (1, 2, 3).A pragmatic, empirical approach is described which enables a microscopist to perform physical measurements of thickness of thin sections and estimates of local mass, volume, density and, possibly, molecular configurations within thin sections directly in the microscope. A Faraday cage monitors the transmitted electron beam and permits measurements of electron beam intensities.


Sign in / Sign up

Export Citation Format

Share Document