scholarly journals The regulation of hemopoiesis in long-term bone marrow cultures. II. Stimulation and inhibition of stem cell proliferation

Blood ◽  
1980 ◽  
Vol 55 (6) ◽  
pp. 931-936 ◽  
Author(s):  
D Toksoz ◽  
TM Dexter ◽  
BI Lord ◽  
EG Wright ◽  
LG Lajtha

Abstract The isolation of a DNA synthesis inhibitor (NBME fraction IV) and stimulator (RBME fraction III) specific for the hemopoietic stem cell (CFU-s) from freshly isolated normal adult and regenerating murine bone marrow, respectively, has been well documented. We have utilized long- term liquid bone marrow cultures in a further analysis of the role of these factors in the regulation of CFU-s proliferation. Our results show that shortly after feeding, at a time when the cultured CFU-s are actively proliferating, high levels of the hemopoietic stem cell proliferation stimulator fraction III can be isolated from the culture medium. In contrast, the presence of essentially noncycling CFU-s found in cultures fed 8–10 days previously correlates with high levels of the hemopoietic stem cell inhibitor fraction IV. These results suggest that a certain balance between these factors determines CFU-s proliferation in the long-term cultures. In support of this, DNA synthesis in actively cycling CFU-s in the long-term cultures is inhibited for at least 3 days by the addition of excess NBME fraction IV (inhibitor). Furthermore, DNA synthesis in noncycling cultured CFU-s is stimulated for at least 5 days by the addition of RBME fraction III (stimulator).

Blood ◽  
1980 ◽  
Vol 55 (6) ◽  
pp. 931-936 ◽  
Author(s):  
D Toksoz ◽  
TM Dexter ◽  
BI Lord ◽  
EG Wright ◽  
LG Lajtha

The isolation of a DNA synthesis inhibitor (NBME fraction IV) and stimulator (RBME fraction III) specific for the hemopoietic stem cell (CFU-s) from freshly isolated normal adult and regenerating murine bone marrow, respectively, has been well documented. We have utilized long- term liquid bone marrow cultures in a further analysis of the role of these factors in the regulation of CFU-s proliferation. Our results show that shortly after feeding, at a time when the cultured CFU-s are actively proliferating, high levels of the hemopoietic stem cell proliferation stimulator fraction III can be isolated from the culture medium. In contrast, the presence of essentially noncycling CFU-s found in cultures fed 8–10 days previously correlates with high levels of the hemopoietic stem cell inhibitor fraction IV. These results suggest that a certain balance between these factors determines CFU-s proliferation in the long-term cultures. In support of this, DNA synthesis in actively cycling CFU-s in the long-term cultures is inhibited for at least 3 days by the addition of excess NBME fraction IV (inhibitor). Furthermore, DNA synthesis in noncycling cultured CFU-s is stimulated for at least 5 days by the addition of RBME fraction III (stimulator).


1986 ◽  
Vol 6 (3) ◽  
pp. 959-963
Author(s):  
J A Wyke ◽  
A W Stoker ◽  
S Searle ◽  
E Spooncer ◽  
P Simmons ◽  
...  

Multipotential stem cell lines, derived specifically from long-term bone marrow cultures infected with a recombinant retrovirus carrying v-src, lack v-src. Stable consequences thus result from transient actions or indirect effects of v-src on other cells, with the latter possibility being favored by its mosaic expression in marrow cultures.


1986 ◽  
Vol 6 (3) ◽  
pp. 959-963 ◽  
Author(s):  
J A Wyke ◽  
A W Stoker ◽  
S Searle ◽  
E Spooncer ◽  
P Simmons ◽  
...  

Multipotential stem cell lines, derived specifically from long-term bone marrow cultures infected with a recombinant retrovirus carrying v-src, lack v-src. Stable consequences thus result from transient actions or indirect effects of v-src on other cells, with the latter possibility being favored by its mosaic expression in marrow cultures.


Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3722-3729 ◽  
Author(s):  
Antonia Wimmer ◽  
Sophia K. Khaldoyanidi ◽  
Martin Judex ◽  
Naira Serobyan ◽  
Richard G. DiScipio ◽  
...  

AbstractChemokines play a role in regulating hematopoietic stem cell function, including migration, proliferation, and retention. We investigated the involvement of CCL18 in the regulation of bone marrow hematopoiesis. Treatment of human long-term bone marrow cultures (LTBMCs) with CCL18 resulted in significant stimulation of hematopoiesis, as measured by the total number of hematopoietic cells and their committed progenitors produced in culture. Monocytes/macrophages, whose survival was almost doubled in the presence of CCL18 compared with controls, were the primary cells mediating this effect. Conditioned media from CCL18-treated mature monocytes fostered colony-promoting activity that increased the number of colonies formed by hematopoietic progenitor cells. Gene expression profiling of CCL18-stimulated monocytes demonstrated more than 200 differentially expressed genes, including those regulating apoptosis (caspase-8) and proliferation (IL-6, IL-15, stem cell factor [SCF]). Up-regulation of these cytokines was confirmed on the protein expression level. The contribution of SCF and IL-6 in CCL18-mediated stimulatory activity for hematopoiesis was confirmed by SCF- and IL-6–blocking antibodies that significantly inhibited the colony-promoting activity of CCL18-stimulated conditioned medium. In addition to the effect on monocytes, CCL18 facilitated the formation of the adherent layer in LTBMCs and increased the proliferation of stromal fibroblast-like cells.


Endocrinology ◽  
1987 ◽  
Vol 120 (6) ◽  
pp. 2326-2333 ◽  
Author(s):  
B. R. MACDONALD ◽  
N. TAKAHASHI ◽  
L. M. MCMANUS ◽  
J. HOLAHAN, ◽  
G. R. MUNDY ◽  
...  

1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.


1989 ◽  
Vol 9 (9) ◽  
pp. 3973-3981 ◽  
Author(s):  
G V Borzillo ◽  
C J Sherr

Murine long-term bone marrow cultures that support B-lymphoid-cell development were infected with a helper-free retrovirus containing the v-fms oncogene. Infection of B-lymphoid cultures resulted in the rapid clonal outgrowth of early pre-B cells, which grew to high cell densities on stromal cell feeder layers, expressed v-fms-coded glycoproteins, and underwent immunoglobulin heavy-chain gene rearrangements. Late-passage cultures gave rise to factor-independent variants that proliferated in the absence of feeder layers, developed resistance to hydrocortisone, and became tumorigenic in syngeneic mice. The v-fms oncogene therefore recapitulates known effects of the v-abl and bcr-abl oncogenes on B-lineage cells. The ability of v-fms to induce transformation of early pre-B cells in vitro underscores the capacity of oncogenic mutants of the colony-stimulating factor-1 receptor to function outside the mononuclear phagocyte lineage.


Sign in / Sign up

Export Citation Format

Share Document