Effects of recombinant human stem cell factor (rh-SCF) on colony formation and long-term bone marrow cultures (LTBMC) in patients with myelodysplastic syndromes

2009 ◽  
Vol 52 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Davide Soligo ◽  
Federica Servida ◽  
Agostino Cortelezzi ◽  
Donata Pedretti ◽  
Lilli Uziel ◽  
...  
Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3419-3419
Author(s):  
Shinsuke Takagi ◽  
Yoriko Saito ◽  
Atsushi Hijikata ◽  
Satoshi Tanaka ◽  
Takashi Watanabe ◽  
...  

Abstract Abstract 3419 Recently, advances in xenograft models for human hemamtopoietic stem cells (HSCs), or the humanized mice, have begun to allow investigators to examine the differentiation of human hematopoietic and immune cells in vivo. However, lymphoid-skewed human hematopoietic development in the mouse bone marrow is one of the remaining limitations in the humanized mouse models. The inefficient human myeloid development could at least partly be attributed to the mouse microenvironment not fully supporting differentiation and maturation of human myeloid lineage. To overcome this problem, we focused on the role of membrane-bound human stem cell factor in supporting the maintenance of human HSCs and inducing the development of human myeloid cells and created human stem cell factor transgenic NOD/SCID/IL2rgKO (hSCF Tg NSG) mice. Transplantation of 5000–50000 cord blood-derived Lin-CD34+CD38- cells resulted in significantly higher engraftment of human CD45+ leukocytes at 3–6 months post-transplantation in the bone marrow, spleen, and peripheral blood of hSCF Tg NSG recipients compared with those of non-transgenic NSG recipients. The enhanced human CD45+ engraftment was most prominent in the bone marrow (hSCF Tg recipients: 98.0 +/− 1.3%, n= 15, non-Tg NSG controls: 75.3 +/− 7.3%, n=7). In the bone marrow, the frequency of human CD33+ myeloid cells within the total human CD45+ population was significantly higher in the hSCF Tg NSG recipients than in the non-Tg NSG recipients and constituted the majority of human hematopoietic cells (hSCF Tg recipients: 54.6 +/− 4.5%, n=15 and non-Tg NSG controls: 29.3 +/− 4.0%, n=7). Flow cytometric analysis demonstrated that the majority of engrafted human myeloid cells in the hSCF Tg recipient bone marrow were side-scatter high, HLA-DR negative granulocytes. Reflecting the effect of human SCF on the development of human mast cells, human c-Kit+CD203c+ mast cells were identified in the bone marrow, spleen, and gastrointestinal tracts of the hSCF Tg NSG recipients. Altogether, the in vivo humanized mouse model demonstrates the essential role of membrane-bound SCF in human myeloid development. The hSCF Tg NSG humanized mice may facilitate the in vivo investigation of human HSCs, myeloid progenitors and mature myeloid lineage. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 35 (8) ◽  
pp. 1102-1107 ◽  
Author(s):  
Mariana Lazarini ◽  
Fabíola Traina ◽  
Sheila M. Winnischofer ◽  
Fernando F. Costa ◽  
Mary Luci S. Queiroz ◽  
...  

Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2620-2627 ◽  
Author(s):  
G Migliaccio ◽  
AR Migliaccio ◽  
ML Druzin ◽  
PJ Giardina ◽  
KM Zsebo ◽  
...  

Human cord blood was used as a source of progenitor and stem cells to evaluate the effect of recombinant human stem-cell factor (SCF) on colony formation and the generation of colony-forming cells (CFC) under highly defined, serum-deprived conditions. SCF interacted with a number of hematopoietic growth factors to stimulate colony growth and was particularly effective in stimulating the formation of mixed-cell colonies from CD34+ soybean agglutinin negative (SBA-) cells. In suspension culture of CD34+, SBA- cells, SCF alone was unable to maintain cell numbers or CFC but, in combination with interleukin-3 (IL- 3), increased input numbers of cells by 10-fold and increased CFC of all kinds by nearly 20-fold. This included erythroid burst-forming cells (BFU-E), granulocyte/macrophage (GM) CFC, and mixed-cell CFC. In contrast, CD34- SBA- cells neither gave rise to CFC nor were maintained by combinations of growth factors including SCF. SCF interacted with erythropoietin (Epo) and granulocyte colony-stimulating factor (G-CSF) to maintain large numbers of cells as well as to generate a twofold to threefold increase in CFC in the case of Epo, and a 10-fold increase in CFC in the case of G-CSF. With Epo, the predominant CFC generated were BFU-E and erythroid CFC and many of the cells in suspension were erythroblasts. In contrast, SCF plus G-CSF resulted in large numbers of granulocytes at various stages of maturation and the CFC generated were almost exclusively granulocytic-CFC. IL-1 and IL-6, alone or in combination with SCF, showed little or no ability to increase cell numbers or generate CFC. In summary, SCF interacts with a variety of hematopoietic growth factors to promote colony formation, particularly mixed-cell colony formation, and also, in suspension culture, SCF interacts with IL-3, G-CSF, and Epo to generate large numbers of differentiated cells as well as a variety of CFC for up to 1 month.


Blood ◽  
1980 ◽  
Vol 55 (6) ◽  
pp. 931-936 ◽  
Author(s):  
D Toksoz ◽  
TM Dexter ◽  
BI Lord ◽  
EG Wright ◽  
LG Lajtha

Abstract The isolation of a DNA synthesis inhibitor (NBME fraction IV) and stimulator (RBME fraction III) specific for the hemopoietic stem cell (CFU-s) from freshly isolated normal adult and regenerating murine bone marrow, respectively, has been well documented. We have utilized long- term liquid bone marrow cultures in a further analysis of the role of these factors in the regulation of CFU-s proliferation. Our results show that shortly after feeding, at a time when the cultured CFU-s are actively proliferating, high levels of the hemopoietic stem cell proliferation stimulator fraction III can be isolated from the culture medium. In contrast, the presence of essentially noncycling CFU-s found in cultures fed 8–10 days previously correlates with high levels of the hemopoietic stem cell inhibitor fraction IV. These results suggest that a certain balance between these factors determines CFU-s proliferation in the long-term cultures. In support of this, DNA synthesis in actively cycling CFU-s in the long-term cultures is inhibited for at least 3 days by the addition of excess NBME fraction IV (inhibitor). Furthermore, DNA synthesis in noncycling cultured CFU-s is stimulated for at least 5 days by the addition of RBME fraction III (stimulator).


1995 ◽  
Vol 103 (2) ◽  
pp. 177-184 ◽  
Author(s):  
Attilio Orazi ◽  
Michael S. Gordon ◽  
Karla John ◽  
George Sledge ◽  
Richard S. Neiman ◽  
...  

1986 ◽  
Vol 6 (3) ◽  
pp. 959-963
Author(s):  
J A Wyke ◽  
A W Stoker ◽  
S Searle ◽  
E Spooncer ◽  
P Simmons ◽  
...  

Multipotential stem cell lines, derived specifically from long-term bone marrow cultures infected with a recombinant retrovirus carrying v-src, lack v-src. Stable consequences thus result from transient actions or indirect effects of v-src on other cells, with the latter possibility being favored by its mosaic expression in marrow cultures.


Sign in / Sign up

Export Citation Format

Share Document