scholarly journals Subpopulation heterogeneity in human acute myeloid leukemia determined by monoclonal antibodies

Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 275-281 ◽  
Author(s):  
S Pessano ◽  
A Palumbo ◽  
D Ferrero ◽  
GL Pagliardi ◽  
L Bottero ◽  
...  

Abstract The leukemic population in 63 patients with acute myeloid leukemia (AML) was studied with 15 monoclonal antibodies that detect lineage- related and stage-related antigens on normal hemopoietic cells. Indirect immunofluorescence and fluorescence-activated cell sorting showed that subpopulations of leukemic cells reacted with some or all antibodies, but the percentage of cells reacting with a single antibody varied widely among patients. The composite antigenic phenotype of the various cases, as determined by immunofluorescence assay, did not correlate with the French-American-British morphological classification. Furthermore, some cells in each case failed to express any antigen normally expressed on myelomonocytic precursors from the level of the early CFU-GM to the mature granulocyte or monocyte. In double-fluorescence experiments, the individual cells expressed none, one, or both antigens. These results demonstrate that there is considerable subpopulation heterogeneity in AML. This heterogeneity may considerably limit or complicate the use of monoclonal antibodies for diagnosis, prognosis, and treatment of acute nonlymphocytic leukemia (ANLL).

Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 275-281
Author(s):  
S Pessano ◽  
A Palumbo ◽  
D Ferrero ◽  
GL Pagliardi ◽  
L Bottero ◽  
...  

The leukemic population in 63 patients with acute myeloid leukemia (AML) was studied with 15 monoclonal antibodies that detect lineage- related and stage-related antigens on normal hemopoietic cells. Indirect immunofluorescence and fluorescence-activated cell sorting showed that subpopulations of leukemic cells reacted with some or all antibodies, but the percentage of cells reacting with a single antibody varied widely among patients. The composite antigenic phenotype of the various cases, as determined by immunofluorescence assay, did not correlate with the French-American-British morphological classification. Furthermore, some cells in each case failed to express any antigen normally expressed on myelomonocytic precursors from the level of the early CFU-GM to the mature granulocyte or monocyte. In double-fluorescence experiments, the individual cells expressed none, one, or both antigens. These results demonstrate that there is considerable subpopulation heterogeneity in AML. This heterogeneity may considerably limit or complicate the use of monoclonal antibodies for diagnosis, prognosis, and treatment of acute nonlymphocytic leukemia (ANLL).


2016 ◽  
Vol 213 (8) ◽  
pp. 1513-1535 ◽  
Author(s):  
Lynn Quek ◽  
Georg W. Otto ◽  
Catherine Garnett ◽  
Ludovic Lhermitte ◽  
Dimitris Karamitros ◽  
...  

Our understanding of the perturbation of normal cellular differentiation hierarchies to create tumor-propagating stem cell populations is incomplete. In human acute myeloid leukemia (AML), current models suggest transformation creates leukemic stem cell (LSC) populations arrested at a progenitor-like stage expressing cell surface CD34. We show that in ∼25% of AML, with a distinct genetic mutation pattern where >98% of cells are CD34−, there are multiple, nonhierarchically arranged CD34+ and CD34− LSC populations. Within CD34− and CD34+ LSC–containing populations, LSC frequencies are similar; there are shared clonal structures and near-identical transcriptional signatures. CD34− LSCs have disordered global transcription profiles, but these profiles are enriched for transcriptional signatures of normal CD34− mature granulocyte–macrophage precursors, downstream of progenitors. But unlike mature precursors, LSCs express multiple normal stem cell transcriptional regulators previously implicated in LSC function. This suggests a new refined model of the relationship between LSCs and normal hemopoiesis in which the nature of genetic/epigenetic changes determines the disordered transcriptional program, resulting in LSC differentiation arrest at stages that are most like either progenitor or precursor stages of hemopoiesis.


Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4754-4761 ◽  
Author(s):  
HJ Sutherland ◽  
A Blair ◽  
RW Zapf

Despite the usual uniform and primitive appearance of cells derived from the leukemic clone in most patients with acute myeloid leukemia (AML), there is considerable heterogeneity among leukemic blasts, particularly with respect to their capacity to proliferate and/or self renew. We have assessed whether these differences in proliferative potential are correlated with the phenotypic changes that characterize normal hematopoiesis, which might suggest an analogous hierarchy of AML progenitors. We have used the ability of primitive AML cells to persist or produce blast colony forming cells (CFU-blast) detected after 2 to 8 weeks in the presence of growth factors in suspension cultures (SC) termed SC-initiating cells (IC), or with stroma in long-term cultures (LTC-IC) as a quantitative assay for a cell that may have primitive characteristics. This SC assay is linear, cell concentration independent, and the frequency of SC-IC by limiting dilution analysis is lower than primary CFU-blast. The average output of CFU-blast after 2 to 8 weeks by individual SC-IC varied between 2 and more than 100 in individual patients. Leukemic blasts were sorted based on their expression of antigens previously found useful to characterize normal progenitor differentiation, and analyzed for the percentage of CFU- blast SC-IC, and leukemic LTC-IC within each fraction. All of these progenitor types were heterogeneous in their expression of CD45RA and CD33, but expressed uniformly low levels of CD15 and differed from normal primitive progenitors in their high expression of HLA-DR. CFU- blast had a significantly higher expression of CD71 and CD38 as compared with SC-IC or leukemic LTC-IC. In patients with CD34+ blasts, the majority of their SC-IC at 4 weeks were CD34+/CD38-; however, patients with CD34- blasts had at least some CD34- progenitors. These results show that while heterogeneity exists between patients, it is possible to physically separate subpopulations of AML cells with different proliferative potentials. It also provides some support for the concept that quantitation of leukemic cells capable of producing CFU-blast for 4 weeks or more in vitro measures a less frequent leukemic progenitor with higher proliferative potential that may be the only relevant cell for maintaining the leukemic clone in vivo.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 83-89 ◽  
Author(s):  
CA Hanson ◽  
KJ Gajl-Peczalska ◽  
JL Parkin ◽  
RD Brunning

Abstract The leukemic cells from 41 cases of acute myeloid leukemia (AML) and 17 cases of acute lymphocytic leukemia (ALL) were immunophenotyped by the alkaline phosphatase-antialkaline phosphatase (APAAP) immunocytochemical technique utilizing eight monoclonal antibodies (MoAb) reactive with cells of myeloid origin and seven MoAb reactive with lymphoid antigens. Ninety percent of the cases of AML reacted with one or more of the pan-myeloid MoAb, My7, My9, or 20.3. Reactivity of the myeloid panel of MoAb showed some correlation with the French- American-British (FAB) classification of AML. Five of six cases of acute promyelocytic leukemia (APL) were HLA-DR negative; the one HLA-DR- positive APL had a minor population of HLA-DR-negative promyelocytes. OKM5 and/or My4 reacted with 16 of 16 monocytic leukemias. No specific marker of early erythroid development was identified. AP3, a MoAb reactive with platelet glycoprotein (GPIIIa), was specific for acute megakaryoblastic leukemia. Immunocytochemistry was also helpful in classifying seven cases of AML with equivocal or negative routine cytochemistry. Two cases of AML had minor populations of blasts detected by the APAAP technique that were immunologically distinct from the major blast population; these minor populations emerged as the predominant cell type at relapse. Two cases of ALL expressed multiple myeloid and lymphoid antigens. Two other cases that morphologically were ALL reacted with only myeloid MoAb; one consisted entirely of immature basophils on ultrastructural examination. Immunophenotyping results using the APAAP technique were comparable with those obtained with flow cytometry. The APAAP technique is a reliable method for immunophenotyping leukemia that complements other methods of immunologic evaluation. The primary advantages of this method include its use with routinely prepared blood and bone marrow smears and the ability to correlate immunocytochemical reactions with morphology.


Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 693-700 ◽  
Author(s):  
B Lange ◽  
D Ferrero ◽  
S Pessano ◽  
A Palumbo ◽  
J Faust ◽  
...  

Colony-forming cells in ten cases of acute myeloid leukemia (AML) were studied with six cytotoxic monoclonal antibodies that react with antigens expressed at discrete stages of differentiation of normal and leukemic hematopoietic cells. The reactivity of the whole leukemic population was measured by indirect immunofluorescence, and the reactivity of the colony-forming cells was established by complement- mediated cytotoxicity and by fluorescence activated cell sorting. Comparison of the immunofluorescent reactivity with cytotoxicity and cell sorting showed that colony-forming cells were found within a fraction of the leukemic subpopulations that expresses these antigens. This finding implies that immunofluorescence reactivity of the total leukemic population does not necessarily predict the phenotype of the clonogenic cells. When the surface phenotype of the clonogenic leukemic cells was compared to that previously established for normal marrow hemopoietic clonogenic cells, several patterns were seen: (1) in four of ten cases, the clonogenic cells expressed a phenotype like that of relatively mature normal granulocyte-macrophage colony-forming cells (late CFU-GM) or, (2) in two cases, a phenotype similar to the less mature colony-forming cells (early CFU-GM or CFU-GEMM), and (3) in four cases, a composite phenotype of early and late CFU-GM. Thus, the level of impairment of differentiation in AML may vary from case to case. In those cases phenotypically similar to the late CFU-GM, it may be possible to separate leukemic clonogenic cells from less mature normal clonogenic cells using monoclonal antibodies selectively cytotoxic for the late CFU-GM.


Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 693-700 ◽  
Author(s):  
B Lange ◽  
D Ferrero ◽  
S Pessano ◽  
A Palumbo ◽  
J Faust ◽  
...  

Abstract Colony-forming cells in ten cases of acute myeloid leukemia (AML) were studied with six cytotoxic monoclonal antibodies that react with antigens expressed at discrete stages of differentiation of normal and leukemic hematopoietic cells. The reactivity of the whole leukemic population was measured by indirect immunofluorescence, and the reactivity of the colony-forming cells was established by complement- mediated cytotoxicity and by fluorescence activated cell sorting. Comparison of the immunofluorescent reactivity with cytotoxicity and cell sorting showed that colony-forming cells were found within a fraction of the leukemic subpopulations that expresses these antigens. This finding implies that immunofluorescence reactivity of the total leukemic population does not necessarily predict the phenotype of the clonogenic cells. When the surface phenotype of the clonogenic leukemic cells was compared to that previously established for normal marrow hemopoietic clonogenic cells, several patterns were seen: (1) in four of ten cases, the clonogenic cells expressed a phenotype like that of relatively mature normal granulocyte-macrophage colony-forming cells (late CFU-GM) or, (2) in two cases, a phenotype similar to the less mature colony-forming cells (early CFU-GM or CFU-GEMM), and (3) in four cases, a composite phenotype of early and late CFU-GM. Thus, the level of impairment of differentiation in AML may vary from case to case. In those cases phenotypically similar to the late CFU-GM, it may be possible to separate leukemic clonogenic cells from less mature normal clonogenic cells using monoclonal antibodies selectively cytotoxic for the late CFU-GM.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2836-2836
Author(s):  
Yujun Dai ◽  
Yueying Wang ◽  
Jinyan Huang ◽  
Li Xia ◽  
Xiaodong Shi ◽  
...  

Abstract Introduction DNMT3A is a gene frequently mutated in human acute myeloid leukemia (AML), with DNMT3A R882H as the hot spot. It had been long postulated that DNMT3A mutation should play a key role in AML pathogenesis, so far the main animal models used were Dnmt3a-/- or transplantation of retrovirally transduced bone marrow cells expressing human DNMT3A R882H mutations (BMT). To recapitulate the features of human AML associated with DNMT3A mutation, this study generated a conditional knock-in mouse model to express Dnmt3a R878H mutation (homologous to human DNMT3A R882H) from the endogenous promoter/enhancer. We investigated epigenetic changes, including gene expression profiles, DNA methylation, and chromatin modification as affected by the mutation. We also explored the potential mechanisms that can explain the process by which DNMT3Amutation hierarchically induces abnormal hematopoiesis and the manner by which specific regulators of relevant pathways in murine and human settings can be targeted for potential therapeutic applications. Method We performed the single-cell RNA-seq (scRNA-seq) of LSKs and MEPs, RNA-seq and Methylated DNA immunoprecipitation sequencing (MeDIP-seq) of Gr-1 cells and whole exome sequence (WES) of BMs and tails in Dnmt3a R878H conditional knock-in mice. Result Approximately 4-6 months after birth with interferon induction, all Dnmt3aR878H/WTMx1-Cre+ knock-in mice developed AML of myelomonocytic subtype, characterized by massive expansion of immature cells and infiltration of bone marrow, spleen and lymph node, along with hyperleukocytosis, thrombocytosis, splenomegaly and lymphadenectasis. The leukemic mice also showed severe diffuse skin ulceration and alopecia. The transcriptome and DNA methylation profiling of bulk Gr-1 leukemic cells and the single-cell RNA-sequencing of LSKs/MEPs revealed significant changes in gene expression and epigenetic regulatory patterns that could cause differentiation arrest and growth advantage. Consistent with leukemic cell accumulation in G2/M phase, CDK1 was found overexpressed as a result of mTOR gene activation due to DNA hypomethylation in the gene body region. We then discovered that overexpressed CDK1 could compete with EZH2 in binding to DNMT3A, induce EZH2 phosphorylation and reduction, and result in abnormal histone methylation. Notably, we showed a very significant response from Dnmt3aR878H/WTto the therapeutic effect of the mTOR inhibitor rapamycin, particularly in terms of prolongation of lifespan in treatment group as compared to the control group (p<0.001). Moreover, rapamycin exerted strong inhibitory effects, including anti-proliferative and apoptosis-induction ones, on human AML cells lines and primary samples from AML patients harboring DNMT3A mutation. Conclusions We established a novel mouse model for the expression of mutant Dnmt3a R878H from endogenous locus to investigate the role of Dnmt3a abnormality in leukemogenesis. Indeed, Dnmt3aR878H/WTMx1-Cre+ mice developed AML of myelomonocytic subtype with skin injury. We discovered unique gene expression and DNA methylation patterns in concordance with enhanced proliferation and suppressed differentiation in leukemic cells. The heterogeneity of gene expression in individual leukemic stem/progenitor cells implied the presence of clonal diversity, which could underlie disease evolution. The activation of mTOR and the resultant overexpression of CDK1 might contribute to malignant transformation. Evidence has been obtained in both murine and human settings to suggest DNMT3A mutation-related AML as a potential disease target for rapamycin. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 83-89 ◽  
Author(s):  
CA Hanson ◽  
KJ Gajl-Peczalska ◽  
JL Parkin ◽  
RD Brunning

The leukemic cells from 41 cases of acute myeloid leukemia (AML) and 17 cases of acute lymphocytic leukemia (ALL) were immunophenotyped by the alkaline phosphatase-antialkaline phosphatase (APAAP) immunocytochemical technique utilizing eight monoclonal antibodies (MoAb) reactive with cells of myeloid origin and seven MoAb reactive with lymphoid antigens. Ninety percent of the cases of AML reacted with one or more of the pan-myeloid MoAb, My7, My9, or 20.3. Reactivity of the myeloid panel of MoAb showed some correlation with the French- American-British (FAB) classification of AML. Five of six cases of acute promyelocytic leukemia (APL) were HLA-DR negative; the one HLA-DR- positive APL had a minor population of HLA-DR-negative promyelocytes. OKM5 and/or My4 reacted with 16 of 16 monocytic leukemias. No specific marker of early erythroid development was identified. AP3, a MoAb reactive with platelet glycoprotein (GPIIIa), was specific for acute megakaryoblastic leukemia. Immunocytochemistry was also helpful in classifying seven cases of AML with equivocal or negative routine cytochemistry. Two cases of AML had minor populations of blasts detected by the APAAP technique that were immunologically distinct from the major blast population; these minor populations emerged as the predominant cell type at relapse. Two cases of ALL expressed multiple myeloid and lymphoid antigens. Two other cases that morphologically were ALL reacted with only myeloid MoAb; one consisted entirely of immature basophils on ultrastructural examination. Immunophenotyping results using the APAAP technique were comparable with those obtained with flow cytometry. The APAAP technique is a reliable method for immunophenotyping leukemia that complements other methods of immunologic evaluation. The primary advantages of this method include its use with routinely prepared blood and bone marrow smears and the ability to correlate immunocytochemical reactions with morphology.


Sign in / Sign up

Export Citation Format

Share Document