scholarly journals Surface phenotype of clonogenic cells in acute myeloid leukemia defined by monoclonal antibodies

Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 693-700 ◽  
Author(s):  
B Lange ◽  
D Ferrero ◽  
S Pessano ◽  
A Palumbo ◽  
J Faust ◽  
...  

Colony-forming cells in ten cases of acute myeloid leukemia (AML) were studied with six cytotoxic monoclonal antibodies that react with antigens expressed at discrete stages of differentiation of normal and leukemic hematopoietic cells. The reactivity of the whole leukemic population was measured by indirect immunofluorescence, and the reactivity of the colony-forming cells was established by complement- mediated cytotoxicity and by fluorescence activated cell sorting. Comparison of the immunofluorescent reactivity with cytotoxicity and cell sorting showed that colony-forming cells were found within a fraction of the leukemic subpopulations that expresses these antigens. This finding implies that immunofluorescence reactivity of the total leukemic population does not necessarily predict the phenotype of the clonogenic cells. When the surface phenotype of the clonogenic leukemic cells was compared to that previously established for normal marrow hemopoietic clonogenic cells, several patterns were seen: (1) in four of ten cases, the clonogenic cells expressed a phenotype like that of relatively mature normal granulocyte-macrophage colony-forming cells (late CFU-GM) or, (2) in two cases, a phenotype similar to the less mature colony-forming cells (early CFU-GM or CFU-GEMM), and (3) in four cases, a composite phenotype of early and late CFU-GM. Thus, the level of impairment of differentiation in AML may vary from case to case. In those cases phenotypically similar to the late CFU-GM, it may be possible to separate leukemic clonogenic cells from less mature normal clonogenic cells using monoclonal antibodies selectively cytotoxic for the late CFU-GM.

Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 693-700 ◽  
Author(s):  
B Lange ◽  
D Ferrero ◽  
S Pessano ◽  
A Palumbo ◽  
J Faust ◽  
...  

Abstract Colony-forming cells in ten cases of acute myeloid leukemia (AML) were studied with six cytotoxic monoclonal antibodies that react with antigens expressed at discrete stages of differentiation of normal and leukemic hematopoietic cells. The reactivity of the whole leukemic population was measured by indirect immunofluorescence, and the reactivity of the colony-forming cells was established by complement- mediated cytotoxicity and by fluorescence activated cell sorting. Comparison of the immunofluorescent reactivity with cytotoxicity and cell sorting showed that colony-forming cells were found within a fraction of the leukemic subpopulations that expresses these antigens. This finding implies that immunofluorescence reactivity of the total leukemic population does not necessarily predict the phenotype of the clonogenic cells. When the surface phenotype of the clonogenic leukemic cells was compared to that previously established for normal marrow hemopoietic clonogenic cells, several patterns were seen: (1) in four of ten cases, the clonogenic cells expressed a phenotype like that of relatively mature normal granulocyte-macrophage colony-forming cells (late CFU-GM) or, (2) in two cases, a phenotype similar to the less mature colony-forming cells (early CFU-GM or CFU-GEMM), and (3) in four cases, a composite phenotype of early and late CFU-GM. Thus, the level of impairment of differentiation in AML may vary from case to case. In those cases phenotypically similar to the late CFU-GM, it may be possible to separate leukemic clonogenic cells from less mature normal clonogenic cells using monoclonal antibodies selectively cytotoxic for the late CFU-GM.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


Blood ◽  
2003 ◽  
Vol 101 (8) ◽  
pp. 3142-3149 ◽  
Author(s):  
Yinghui Guan ◽  
Brigitte Gerhard ◽  
Donna E. Hogge

Abstract Although many acute myeloid leukemia (AML) colony-forming cells (CFCs) and long-term culture–initiating cells (LTC-ICs) directly isolated from patients are actively cycling, quiescent progenitors are present in most samples. In the current study,3H-thymidine (3H-Tdr) suicide assays demonstrated that most NOD/SCID mouse leukemia-initiating cells (NOD/SL-ICs) are quiescent in 6 of 7 AML samples. AML cells in G0, G1, and S/G2+M were isolated from 4 of these samples using Hoechst 33342/pyroninY staining and cell sorting. The progenitor content of each subpopulation was consistent with the 3H-Tdr suicide results, with NOD/SL-ICs found almost exclusively among G0 cells while the cycling status of AML CFCs and LTC-ICs was more heterogeneous. Interestingly, after 72 hours in serum-free culture with or without Steel factor (SF), Flt-3 ligand (FL), and interleukin-3 (IL-3), most G0 AML cells entered active cell cycle (percentage of AML cells remaining in G0 at 72 hours, 1.2% to 37%, and 0% to 7.6% in cultures without and with growth factors [GFs], respectively) while G0 cells from normal lineage-depleted bone marrow remained quiescent in the absence of GF. All 4 AML samples showed evidence of autocrine production of 2 or more of SF, FL, IL-3, and granulocyte-macrophage colony-stimulating factor (GM-CSF). In addition, 3 of 4 samples contained an internal tandem duplication of theFLT3 gene. In summary, quiescent leukemic cells, including NOD/SL-ICs, are present in most AML patients. Their spontaneous entry into active cell cycle in short-term culture might be explained by the deregulated GF signaling present in many AMLs.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 83-89 ◽  
Author(s):  
CA Hanson ◽  
KJ Gajl-Peczalska ◽  
JL Parkin ◽  
RD Brunning

Abstract The leukemic cells from 41 cases of acute myeloid leukemia (AML) and 17 cases of acute lymphocytic leukemia (ALL) were immunophenotyped by the alkaline phosphatase-antialkaline phosphatase (APAAP) immunocytochemical technique utilizing eight monoclonal antibodies (MoAb) reactive with cells of myeloid origin and seven MoAb reactive with lymphoid antigens. Ninety percent of the cases of AML reacted with one or more of the pan-myeloid MoAb, My7, My9, or 20.3. Reactivity of the myeloid panel of MoAb showed some correlation with the French- American-British (FAB) classification of AML. Five of six cases of acute promyelocytic leukemia (APL) were HLA-DR negative; the one HLA-DR- positive APL had a minor population of HLA-DR-negative promyelocytes. OKM5 and/or My4 reacted with 16 of 16 monocytic leukemias. No specific marker of early erythroid development was identified. AP3, a MoAb reactive with platelet glycoprotein (GPIIIa), was specific for acute megakaryoblastic leukemia. Immunocytochemistry was also helpful in classifying seven cases of AML with equivocal or negative routine cytochemistry. Two cases of AML had minor populations of blasts detected by the APAAP technique that were immunologically distinct from the major blast population; these minor populations emerged as the predominant cell type at relapse. Two cases of ALL expressed multiple myeloid and lymphoid antigens. Two other cases that morphologically were ALL reacted with only myeloid MoAb; one consisted entirely of immature basophils on ultrastructural examination. Immunophenotyping results using the APAAP technique were comparable with those obtained with flow cytometry. The APAAP technique is a reliable method for immunophenotyping leukemia that complements other methods of immunologic evaluation. The primary advantages of this method include its use with routinely prepared blood and bone marrow smears and the ability to correlate immunocytochemical reactions with morphology.


Cancers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 73 ◽  
Author(s):  
Annette K. Brenner ◽  
Elise Aasebø ◽  
Maria Hernandez-Valladares ◽  
Frode Selheim ◽  
Frode Berven ◽  
...  

Acute myeloid leukemia (AML) is an aggressive malignancy, which is highly heterogeneous with regard to chemosensitivity and biological features. The AML cell population is organized in a hierarchy that is reflected in the in vitro growth characteristics, with only a minority of cells being able to proliferate for more than two weeks. In this study, we investigated the ability of AML stem cells to survive and proliferate in suspension cultures in the presence of exogenous mediators but without supporting non-leukemic cells. We saw that a high number of maintained stem cells (i.e., a large number of clonogenic cells after five weeks of culture) was associated with decreased overall survival for patients receiving intensive chemotherapy; this prognostic impact was also detected in the multivariate/adjusted analysis. Furthermore, the patients with many clonogenic cells presented more frequently with mutations in transcription-related genes, and also showed a higher abundance of proteins involved in transcription at the time of diagnosis. In conclusion, the growth characteristics of the long-term proliferating leukemic stem cells seem to have an independent prognostic impact in human AML, and these characteristics appear to be reflected by the mutational landscape and the proteome of the patients at the time of diagnosis.


Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 791-798 ◽  
Author(s):  
Maher Albitar ◽  
Taghi Manshouri ◽  
Yu Shen ◽  
Diane Liu ◽  
Miloslav Beran ◽  
...  

Abstract Myelodysplastic syndrome (MDS) is a disease characterized by ineffective hematopoiesis. There are significant biologic and clinical differences between MDS and acute myeloid leukemia (AML). We studied a cohort of 802 patients, 279 (35%) with newly diagnosed MDS and 523 (65%) with newly diagnosed AML, and compared clinical and biologic characteristics of the 2 groups. Complete clinical and cytogenetic data were available on all patients, and a subgroup of patients was studied for apoptosis, angiogenesis, proliferation, and growth factors. Our results demonstrate that MDS is a discrete entity that is different from AML and is characterized primarily by increased apoptosis in early and mature hematopoietic cells. Using cell sorting and loss of heterozygosity, we demonstrate that the leukemic cells from MDS patients are capable of differentiation into mature myeloid cells and monocytes. We also demonstrate that there is a significant overlap between AML and MDS when MDS is defined on the basis of an arbitrary percentage of blasts of 20% or 30%. These data suggest that despite similarities between AML and MDS in their responses to treatment and outcomes, MDS is biologically and clinically different from AML and should not be considered an early phase of AML. The data indicate that MDS must be better defined on the basis of its biology rather than the percentage of blasts; further, the data suggest that there is a need to develop therapeutic approaches that specifically address the biologic abnormalities of MDS.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 275-281 ◽  
Author(s):  
S Pessano ◽  
A Palumbo ◽  
D Ferrero ◽  
GL Pagliardi ◽  
L Bottero ◽  
...  

Abstract The leukemic population in 63 patients with acute myeloid leukemia (AML) was studied with 15 monoclonal antibodies that detect lineage- related and stage-related antigens on normal hemopoietic cells. Indirect immunofluorescence and fluorescence-activated cell sorting showed that subpopulations of leukemic cells reacted with some or all antibodies, but the percentage of cells reacting with a single antibody varied widely among patients. The composite antigenic phenotype of the various cases, as determined by immunofluorescence assay, did not correlate with the French-American-British morphological classification. Furthermore, some cells in each case failed to express any antigen normally expressed on myelomonocytic precursors from the level of the early CFU-GM to the mature granulocyte or monocyte. In double-fluorescence experiments, the individual cells expressed none, one, or both antigens. These results demonstrate that there is considerable subpopulation heterogeneity in AML. This heterogeneity may considerably limit or complicate the use of monoclonal antibodies for diagnosis, prognosis, and treatment of acute nonlymphocytic leukemia (ANLL).


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Abstract Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 83-89 ◽  
Author(s):  
CA Hanson ◽  
KJ Gajl-Peczalska ◽  
JL Parkin ◽  
RD Brunning

The leukemic cells from 41 cases of acute myeloid leukemia (AML) and 17 cases of acute lymphocytic leukemia (ALL) were immunophenotyped by the alkaline phosphatase-antialkaline phosphatase (APAAP) immunocytochemical technique utilizing eight monoclonal antibodies (MoAb) reactive with cells of myeloid origin and seven MoAb reactive with lymphoid antigens. Ninety percent of the cases of AML reacted with one or more of the pan-myeloid MoAb, My7, My9, or 20.3. Reactivity of the myeloid panel of MoAb showed some correlation with the French- American-British (FAB) classification of AML. Five of six cases of acute promyelocytic leukemia (APL) were HLA-DR negative; the one HLA-DR- positive APL had a minor population of HLA-DR-negative promyelocytes. OKM5 and/or My4 reacted with 16 of 16 monocytic leukemias. No specific marker of early erythroid development was identified. AP3, a MoAb reactive with platelet glycoprotein (GPIIIa), was specific for acute megakaryoblastic leukemia. Immunocytochemistry was also helpful in classifying seven cases of AML with equivocal or negative routine cytochemistry. Two cases of AML had minor populations of blasts detected by the APAAP technique that were immunologically distinct from the major blast population; these minor populations emerged as the predominant cell type at relapse. Two cases of ALL expressed multiple myeloid and lymphoid antigens. Two other cases that morphologically were ALL reacted with only myeloid MoAb; one consisted entirely of immature basophils on ultrastructural examination. Immunophenotyping results using the APAAP technique were comparable with those obtained with flow cytometry. The APAAP technique is a reliable method for immunophenotyping leukemia that complements other methods of immunologic evaluation. The primary advantages of this method include its use with routinely prepared blood and bone marrow smears and the ability to correlate immunocytochemical reactions with morphology.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 275-281
Author(s):  
S Pessano ◽  
A Palumbo ◽  
D Ferrero ◽  
GL Pagliardi ◽  
L Bottero ◽  
...  

The leukemic population in 63 patients with acute myeloid leukemia (AML) was studied with 15 monoclonal antibodies that detect lineage- related and stage-related antigens on normal hemopoietic cells. Indirect immunofluorescence and fluorescence-activated cell sorting showed that subpopulations of leukemic cells reacted with some or all antibodies, but the percentage of cells reacting with a single antibody varied widely among patients. The composite antigenic phenotype of the various cases, as determined by immunofluorescence assay, did not correlate with the French-American-British morphological classification. Furthermore, some cells in each case failed to express any antigen normally expressed on myelomonocytic precursors from the level of the early CFU-GM to the mature granulocyte or monocyte. In double-fluorescence experiments, the individual cells expressed none, one, or both antigens. These results demonstrate that there is considerable subpopulation heterogeneity in AML. This heterogeneity may considerably limit or complicate the use of monoclonal antibodies for diagnosis, prognosis, and treatment of acute nonlymphocytic leukemia (ANLL).


Sign in / Sign up

Export Citation Format

Share Document