acute myeloid leukemia cells
Recently Published Documents


TOTAL DOCUMENTS

891
(FIVE YEARS 246)

H-INDEX

53
(FIVE YEARS 6)

2022 ◽  
Vol 11 ◽  
Author(s):  
Hongfei Si ◽  
Jie Wang ◽  
Rui He ◽  
Xiuwen Yu ◽  
Shan Li ◽  
...  

Mutated JAK3 has been considered a promising target for cancer therapy. Activating mutations of JAK3 are observed in 3.9%–10% of acute myeloid leukemia (AML) patients, but it is unclear whether AML cells are sensitive to JAK3 inhibitors, and no disease-related human AML cell model has been reported. We have identified U937 as the first human AML cell line expressing the JAK3M511I activated mutation and confirmed that JAK3 inhibitors sensitively suppress the proliferation of U937 AML cells.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009626
Author(s):  
Phuc Nguyen ◽  
Sylvia Chien ◽  
Jin Dai ◽  
Raymond J. Monnat ◽  
Pamela S. Becker ◽  
...  

Identification of cell phenotypic states within heterogeneous populations, along with elucidation of their switching dynamics, is a central challenge in modern biology. Conventional single-cell analysis methods typically provide only indirect, static phenotypic readouts. Transmitted light images, on the other hand, provide direct morphological readouts and can be acquired over time to provide a rich data source for dynamic cell phenotypic state identification. Here, we describe an end-to-end deep learning platform, UPSIDE (Unsupervised Phenotypic State IDEntification), for discovering cell states and their dynamics from transmitted light movies. UPSIDE uses the variational auto-encoder architecture to learn latent cell representations, which are then clustered for state identification, decoded for feature interpretation, and linked across movie frames for transition rate inference. Using UPSIDE, we identified distinct blood cell types in a heterogeneous dataset. We then analyzed movies of patient-derived acute myeloid leukemia cells, from which we identified stem-cell associated morphological states as well as the transition rates to and from these states. UPSIDE opens up the use of transmitted light movies for systematic exploration of cell state heterogeneity and dynamics in biology and medicine.


2021 ◽  
Author(s):  
Anam Tasneem ◽  
Shubham Parashar ◽  
Tanya Jain ◽  
Simran Aittan ◽  
Jyoti Rautela ◽  
...  

Cell surface glycans, depending on their structures and dynamic modifications, act as the first point of contact and regulate cell-cell, cell-matrix, and cell-pathogen interactions. Particularly, the sialyl-Lewis-X (sLeX, CD15s) tetrasaccharide epitope, expressed on both glycoproteins and gangliosides, participates in leukocyte extravasation via interactions with selectins expressed on endothelial cells, lymphocytes, and platelets (CD62-E/L/P). Neutrophils carrying sLeX epitopes are thought to be responsible for chronic inflammatory diseases resulting in plaque formation and atherosclerosis. Intense efforts have been devoted to the development of sLeX mimetics for inhibition of cell adhesion. On the other hand, dysregulated expression of sLeX and poor extravasation are the major underlying causes of leukocyte adhesion deficiency-II (LAD-II) disorders that result in frequent infections and poor immune response. We hypothesized that metabolic processing of peracetyl N-(cycloalkyl)acyl-D-mannosamine derivatives, through the sialic acid pathway, might result in the expression of sialoglycans with altered hydrophobicity which in-turn could modulate their binding to endogenous lectins, including selectins. Herein, we show that treatment of HL-60 (human acute myeloid leukemia) cells with peracetyl N-cyclobutanoyl-D-mannosamine (Ac4ManNCb), at 50 microM for 48 h, resulted in a robust three to four fold increase in the binding of anti-sLeX (CSLEX1) antibody and enhanced cell adhesion to E-selectin coated surfaces; while the corresponding straight-chain analogue, peracetyl N-pentanoyl-D-mannosamine (Ac4ManNPent), and peracetyl N-cyclopropanoyl-D-mannosamine (Ac4ManNCp) both resulted in 2.0-2.5fold increase compared to controls. The ability to enhance sLeX expression using small molecules has the potential to provide novel opportunities to address challenges in the treatment of immune deficiency disorders.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
W. Frank Lenoir ◽  
Micaela Morgado ◽  
Peter C. DeWeirdt ◽  
Megan McLaughlin ◽  
Audrey L. Griffith ◽  
...  

AbstractCRISPR knockout fitness screens in cancer cell lines reveal many genes whose loss of function causes cell death or loss of fitness or, more rarely, the opposite phenotype of faster proliferation. Here we demonstrate a systematic approach to identify these proliferation suppressors, which are highly enriched for tumor suppressor genes, and define a network of 145 such genes in 22 modules. One module contains several elements of the glycerolipid biosynthesis pathway and operates exclusively in a subset of acute myeloid leukemia cell lines. The proliferation suppressor activity of genes involved in the synthesis of saturated fatty acids, coupled with a more severe loss of fitness phenotype for genes in the desaturation pathway, suggests that these cells operate at the limit of their carrying capacity for saturated fatty acids, which we confirm biochemically. Overexpression of this module is associated with a survival advantage in juvenile leukemias, suggesting a clinically relevant subtype.


Sign in / Sign up

Export Citation Format

Share Document