wild carrot
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 11)

H-INDEX

27
(FIVE YEARS 3)

Plant Science ◽  
2021 ◽  
pp. 111011
Author(s):  
Liora Shaltiel-Harpaz ◽  
Mosaab Yahyaa ◽  
Bhagwat Nawade ◽  
Natalia Dudareva ◽  
Mwafaq Ibdah

Author(s):  
Mazhar MW ◽  
◽  
Batool MS ◽  
Saleem T ◽  
Mahmood J ◽  
...  

Potassium is essential macronutrient of plant. It is uptaken by plant through channels and transporters. Plants specie genomes contains a number of KUP/ HAK/KT transporters having the primary function to mediate K+ fluxes. In this study,we have identified 13 gene members of KUP/HAK/KT transporter gene family. In most of the plant species, these genes have been characterized but uncharacterized in D. carota. This study has been done to identify KUP/HAK/KT gene family in D. carota plant species to study its phylogeny. This gene family is important for potassium uptake and play an important role in translocation, osmotic potential regulation, plant development and growth. Different tools like MEGA 7.0.21, pfam, SMART and NCBI-BLASTp has been used to characterize the gene family. This study covers the phylogeny and evolution of KUP/HAK/KT transporters in D. carota with reference to A. thaliana.


Crop Science ◽  
2020 ◽  
Author(s):  
Philipp W. Simon ◽  
William R. Rolling ◽  
Douglas Senalik ◽  
Adam. L. Bolton ◽  
M. A. Rahim ◽  
...  

2020 ◽  
Vol 62 (1-2) ◽  
pp. 137-150
Author(s):  
J. Reiker ◽  
A. T. Rühl ◽  
V. Wissemann ◽  
B. Gemeinhülzer

For restoration purposes nature conservation preferably requests the use of local seed sources based on the “local-is-best” (LIB) approach. However, counter-arguments against this usage are potential benefits by increased variation, which could be beneficial especially in times of global change. We here investigate intraspecific morphological variability of one of the most common herbaceous, insect pollinated and zoochorous plants from seed mixtures used for landscape restoration processes in central Europe, the wild carrot, Daucus carota L. (Apiaceae). Our results show that D. carota features no vegetative but two generative characters that significantly differed among plants originating from seeds of natural (I) and restored (R) sites. We could show that effects of mowing always overlay origin-specific characteristics. The earlier genetic analysis did not support a regional provenance concept for restoration purposes, while slight differences in phenological parameters related to fitness pinpoint to ‘mix and match-admixture provenancing’ as a compromise strategy.


2019 ◽  
pp. 165-174
Author(s):  
L. Palmieri ◽  
S.L. Ellison ◽  
D. Senalik ◽  
P.W. Simon ◽  
J. Brunet
Keyword(s):  

2019 ◽  
Vol 1125 ◽  
pp. 121713 ◽  
Author(s):  
Siwar Majdoub ◽  
Ridha El Mokni ◽  
Aliev Aslan Muradalievich ◽  
Alessandra Piras ◽  
Silvia Porcedda ◽  
...  

HortScience ◽  
2019 ◽  
Vol 54 (9) ◽  
pp. 1470-1476 ◽  
Author(s):  
Adam Bolton ◽  
Aneela Nijabat ◽  
Muhammad Mahmood-ur-Rehman ◽  
Naima Huma Naveed ◽  
A.T.M. Majharul Mannan ◽  
...  

Carrot production is constrained by high levels of heat stress during the germination stage in many global regions. Few studies have been published evaluating the effect of heat stress on carrot seed germination or screening for genetic heat stress tolerance. The objectives of this study were to evaluate the response of diverse carrot germplasm to heat stress, identify heat-tolerant germplasm that may be used by plant breeders, and define the appropriate temperature for assessing heat tolerance in germinating carrot seed. To identify an appropriate screening temperature, three commercial hybrids and an open pollinated variety were evaluated at five temperatures (24, 32.5, 35, 37.5, and 40 °C). In preliminary studies, 35 °C was identified as the optimal temperature for screening heat tolerance of carrot seed. Cultivated and wild carrot plant introductions (PIs) (n = 270) from the U.S. Department of Agriculture (USDA) National Plant Germplasm System (NPGS) representing 41 countries, inbred lines from the USDA Agricultural Research Service (n = 15), and widely grown commercial hybrids (n = 8) were evaluated for heat tolerance under heat stress and nonstress conditions (35 °C and 24 °C, respectively) by calculating absolute decrease in percent germination (AD), inhibition index (II), relative heat tolerance (RHT), and heat tolerance index (HTI). All measurements of heat tolerance identified significant differences among accessions; AD ranged from −13.0% to 86.7%, II ranged from 35.7% to 100.0%, RHT ranged from 0 to 1.36, and HTI ranged from 0.0 to 1.45. The broad-sense heritability (H2) calculations ranged from 0.64 to 0.86 for different traits, indicating a moderately strong genetic contribution to the phenotypic variation. Several wild carrot accessions and inbred lines displayed low levels of heat tolerance, whereas cultivated accessions PI 643114 (United States), PI 652400 and PI 652403 (Turkey), PI 652208 (China), and PI 652403 (Russia) were most heat tolerant. This is the first evaluation of heritability for heat stress tolerance during carrot seed germination, the first measure of HTI, and the first correlation calculation between heat and salt tolerance during germination in carrot.


2019 ◽  
Vol 34 (2) ◽  
pp. 208-213
Author(s):  
Jatinder S. Aulakh

AbstractPRE herbicides are the backbone of a successful weed management program in Christmas tree production. In a 2-yr field study, weed control efficacy and tolerance of newly transplanted Canaan fir to different PRE treatments were evaluated. Herbicide treatments consisted of two rates of each of atrazine plus mesotrione plus S-metolachlor at 561 + 150 + 1,504 and 1,122 + 300 + 3,008 g ai ha−1, flumioxazin at 214 and 429 g ai ha−1, hexazinone plus sulfometuron methyl at 289 + 27 and 480 + 46 g ai ha−1, indaziflam at 20 and 41 g ai ha−1, simazine plus oryzalin at 3,366 + 1,683 and 3,366 + 3,366 g ai ha−1, and a nontreated control. Averaged over 2 yr, all PRE treatments controlled giant foxtail, large crabgrass, and redroot pigweed at least 80% throughout the summer. Only the high rates of atrazine plus mesotrione plus S-metolachlor maintained >80% season-long control of yellow foxtail. Horseweed was controlled >85% with flumioxazin at both rates and at high rates of atrazine plus mesotrione plus S-metolachlor, hexazinone plus sulfometuron methyl, and indaziflam. The season-long PRE control of both red sorrel and wild carrot was maintained ≥80% with atrazine plus mesotrione plus S-metolachlor and hexazinone plus sulfometuron methyl regardless of application rate. By 16 wk after treatment, within-row densities of weeds evaluated in this study were reduced >75% in plots treated with atrazine plus mesotrione plus S-metolachlor at both application rates or hexazinone plus sulfometuron methyl at 480 + 46 g ai ha−1. Within-row weed densities in the nontreated control plots were 50, 32, 36, 25, 27, 31, and 19 plants m−2 for large crabgrass, giant foxtail, horseweed, redroot pigweed, red sorrel, wild carrot, and yellow foxtail, respectively. No discernible injury was observed in Canaan fir with any PRE treatment in both study years.


2019 ◽  
Vol 59 (4) ◽  
pp. 1005-1015 ◽  
Author(s):  
Adam J Ramsey ◽  
David E McCauley ◽  
Jennifer R Mandel

Abstract Organellar genomes are considered to be strictly uniparentally-inherited. Uniparental inheritance allows for cytonuclear coevolution and the development of highly coordinated cytonuclear interactions. Yet, instances of biparental inheritance have been documented across eukaryotes. Biparental inheritance in otherwise uniparentally-inherited organelles is termed leakage (maternal or paternal) and allows for the presence of multiple variants of the same organellar genome within an individual, called heteroplasmy. It is unclear what, if any, evolutionary consequences are placed on nuclear and/or organellar genomes due to heteroplasmy. One way of accessing cytonuclear interactions and potential coevolution is through calculating cytonuclear linkage disequilibrium (cnLD), or the non-random association of alleles between nuclear and organellar genomes. Patterns of cnLD can indicate positive or negative cytonuclear selection, coevolution between the nuclear and organellar genomes, non-traditional organellar inheritance, or instances of ancestral heteroplasmy. In plants, cytonuclear interactions have been shown to play a role in cytoplasmic male sterility which occurs in gynodioecious species and is associated with leakage. We used the gynodioecious species, Daucus carota L. spp. carota, or wild carrot, to investigate cnLD. We genotyped a total of 265 individuals from two regions of the USA at 15 nuclear microsatellites, the mitochondrial genes cox1 and atp9, and an intergenic region between trnS and trnG (StoG) in the plastid genome to calculate nuclear–nuclear LD (nucLD), cnLD, and organellar LD (i.e., within the mtDNA and between mtDNA and ptDNA) within the two regions. We were further able to identify cox1 and StoG heteroplasmy and calculate some of the same LD measures within heteroplasmic and homoplasmic (non-heteroplasmic) datasets. We used a Z-transformation test to demonstrate that heteroplasmic individuals display significantly higher levels of cnLD within both regions. In spite of this, within and between organellar LD is low to moderate. Given these patterns of LD in two regions of the USA in which gene flow has been shown to occur between crop and wild carrot, we suggest that heteroplasmy is an evolutionary mechanism which permits the maintenance of cnLD while also acting to disrupt organellar LD.


Sign in / Sign up

Export Citation Format

Share Document