scholarly journals Activation of human factor VII in the initiation of tissue factor- dependent coagulation

Blood ◽  
1986 ◽  
Vol 68 (3) ◽  
pp. 685-691 ◽  
Author(s):  
LV Rao ◽  
SI Rapaport ◽  
SP Bajaj

We have used activation peptide release assays to compare factor VII and activated factor VII (VIIa) activation of factor X, normal factor IX (IXN), and a variant factor IX (IXBmLE), which, after activation, is unable to back-activate factor VII. In purified systems, factor VII and VIIa each rapidly activated factor X, but after a one minute lag for factor VII. VIIa also readily activated both IXN and IXBmLE. Factor VII initially failed to activate substantial amounts of either IXN or IXBmLE; on further incubation factor VII activated IXN but not IXBmLE. Activation of IXN began when approximately 10% of factor VII had been converted to VIIa, as measured by 125I-factor VII radioactivity profiles. Adding factor VII to VIIa slowed its activation of IXBmLE. However, in the presence of factor X, factor VII alone rapidly activated IXBmLE. Unlike purified systems, 1 nmol/L VIIa added to factor VII-deficient plasma failed to activate factor IX. Increasing factor VII to 10 nmol/L (plasma concentration) either as native VII or VIIa yielded similar activation curves for factor IX and similar activation curves for factor X. Adding 5% VIIa to factor X-deficient plasma and to factor XII-deficient plasma substantially shortened the dilute tissue factor clotting time of only the former. These data support the hypothesis that factor VII/tissue factor complex initiates tissue factor-dependent clotting through a minimal generation of Xa. This Xa then rapidly back-activates a small amount of factor VII, following which the rates of activation of both factors IX and X increase dramatically.

Blood ◽  
1986 ◽  
Vol 68 (3) ◽  
pp. 685-691 ◽  
Author(s):  
LV Rao ◽  
SI Rapaport ◽  
SP Bajaj

Abstract We have used activation peptide release assays to compare factor VII and activated factor VII (VIIa) activation of factor X, normal factor IX (IXN), and a variant factor IX (IXBmLE), which, after activation, is unable to back-activate factor VII. In purified systems, factor VII and VIIa each rapidly activated factor X, but after a one minute lag for factor VII. VIIa also readily activated both IXN and IXBmLE. Factor VII initially failed to activate substantial amounts of either IXN or IXBmLE; on further incubation factor VII activated IXN but not IXBmLE. Activation of IXN began when approximately 10% of factor VII had been converted to VIIa, as measured by 125I-factor VII radioactivity profiles. Adding factor VII to VIIa slowed its activation of IXBmLE. However, in the presence of factor X, factor VII alone rapidly activated IXBmLE. Unlike purified systems, 1 nmol/L VIIa added to factor VII-deficient plasma failed to activate factor IX. Increasing factor VII to 10 nmol/L (plasma concentration) either as native VII or VIIa yielded similar activation curves for factor IX and similar activation curves for factor X. Adding 5% VIIa to factor X-deficient plasma and to factor XII-deficient plasma substantially shortened the dilute tissue factor clotting time of only the former. These data support the hypothesis that factor VII/tissue factor complex initiates tissue factor-dependent clotting through a minimal generation of Xa. This Xa then rapidly back-activates a small amount of factor VII, following which the rates of activation of both factors IX and X increase dramatically.


1998 ◽  
Vol 80 (08) ◽  
pp. 233-238 ◽  
Author(s):  
K. A. Mitropoulos ◽  
M. N. Nanjee ◽  
D. J. Howarth ◽  
J. C. Martin ◽  
M. P. Esnouf ◽  
...  

SummaryAbetalipoproteinaemia is a rare disorder of apolipoprotein B metabolism associated with extremely low plasma concentrations of triglyce-ride. To discover whether the general positive association between factor VII and triglyceride levels extends to this condition, 5 patients were compared with 18 controls. All patients had a triglyceride below 100 μmol/l. Plasma unesterified fatty acid concentration was normal. Although factor IX activity was only slightly reduced (mean 88% standard) and factor IX antigen was normal, mean activated factor VII in patients was strikingly reduced to 34% of that in controls, a level similar to that found in haemophilia B. The patients’ mean factor VII activity and factor VII antigen were also significantly reduced to 54% and 63% of those in controls, respectively. Mean factor XI activity and tissue factor pathway inhibitor activity were reduced in patients to 70% and 75% of control values respectively, while factor XII, factor XI antigen, factor X, prothrombin and protein C were normal.


Blood ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 204-212
Author(s):  
NL Sanders ◽  
SP Bajaj ◽  
A Zivelin ◽  
SI Rapaport

A study was carried out to explore requirements for the inhibition of tissue factor-factor VIIa enzymatic activity in plasma. Reaction mixtures contained plasma, 3H-factor IX or 3H-factor X, tissue factor (vol/vol 2.4% to 24%), and calcium. Tissue factor-factor VIIa activity was evaluated from progress curves of activation of factor IX or factor X, plotted from tritiated activation peptide release data. With normal plasma, progress curves exhibited initial limited activation followed by a plateau indicative of loss of tissue factor-factor VIIa activity. With hereditary factor X-deficient plasma treated with factor X antibodies, progress curves revealed full factor IX activation. Adding only 0.4 micrograms/mL factor X (final concentration) could restore inhibition. Inhibition was not observed in purified systems containing 6% to 24% tissue factor, factor VII, 0.5 micrograms/mL, factor IX, 13 micrograms/mL, and factor X up to 0.8 micrograms/mL, but could be induced by adding barium-absorbed plasma to the reaction mixture. Thus, both factor X and an additional material in plasma were required for inhibition. The amount of factor X needed appeared related to the concentration of tissue factor; adding more tissue factor at the plateau of a progress curve induced further activation. These results also indicate that inhibited reaction mixtures contained active free factor VII(a). Preliminary data suggest that inhibition may stem from loss of activity of the tissue factor component of the tissue factor- factor VII(a) complex.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 218-226 ◽  
Author(s):  
LV Rao ◽  
SP Bajaj ◽  
SI Rapaport

Abstract We have studied factor VII activation by measuring the ratio of factor VII clotting to coupled amidolytic activity (VIIc/VIIam) and cleavage of 125I-factor VII. In purified systems, a low concentration of Xa or a higher concentration of IXa rapidly activated 125I-factor VII, yielding a VIIc/VIIam ratio of 25 and similar gel profiles of heavy and light chain peaks of VIIa. On further incubation, VIIa activity diminished and a third 125I-peak appeared. When normal blood containing added 125I- factor VII was clotted in a glass tube, the VIIc/VIIam ratio rose fivefold, and 20% of the 125I-factor VII was cleaved. Clotting normal plasma in an activated partial thromboplastin time (APTT) system yielded a VIIc/VIIam ratio of 25 and over 90% cleavage of 125I-factor VII. Clotting factor XII-deficient plasma preincubated with antibodies to factor X in an APTT system with added XIa yielded a VIIc/VIIam ratio of 19 and about 60% cleavage, which indicates that IXa, at a concentration achievable in plasma, can effectively activate factor VII. Clotting normal plasma with undiluted tissue factor yielded a VIIc/VIIam ratio of 15 to 20 and 60% cleavage of 125I-factor VII, whereas clotting plasma with diluted tissue factor activated factor VII only minimally. We conclude that both Xa and IXa can function as significant activators of factor VII in in vitro clotting mixtures but believe that only small amounts of factor VII may be activated in vivo during hemostasis.


Blood ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 204-212 ◽  
Author(s):  
NL Sanders ◽  
SP Bajaj ◽  
A Zivelin ◽  
SI Rapaport

Abstract A study was carried out to explore requirements for the inhibition of tissue factor-factor VIIa enzymatic activity in plasma. Reaction mixtures contained plasma, 3H-factor IX or 3H-factor X, tissue factor (vol/vol 2.4% to 24%), and calcium. Tissue factor-factor VIIa activity was evaluated from progress curves of activation of factor IX or factor X, plotted from tritiated activation peptide release data. With normal plasma, progress curves exhibited initial limited activation followed by a plateau indicative of loss of tissue factor-factor VIIa activity. With hereditary factor X-deficient plasma treated with factor X antibodies, progress curves revealed full factor IX activation. Adding only 0.4 micrograms/mL factor X (final concentration) could restore inhibition. Inhibition was not observed in purified systems containing 6% to 24% tissue factor, factor VII, 0.5 micrograms/mL, factor IX, 13 micrograms/mL, and factor X up to 0.8 micrograms/mL, but could be induced by adding barium-absorbed plasma to the reaction mixture. Thus, both factor X and an additional material in plasma were required for inhibition. The amount of factor X needed appeared related to the concentration of tissue factor; adding more tissue factor at the plateau of a progress curve induced further activation. These results also indicate that inhibited reaction mixtures contained active free factor VII(a). Preliminary data suggest that inhibition may stem from loss of activity of the tissue factor component of the tissue factor- factor VII(a) complex.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 645-651 ◽  
Author(s):  
LV Rao ◽  
SI Rapaport

Abstract We have extended earlier studies (Blood 66:204, 1985) of a mechanism of inhibition of factor VIIa/tissue factor activity that requires a plasma component (called herein extrinsic pathway inhibitor or EPI) and factor Xa. An activated peptide release assay using 3H-factor IX as a substrate was used to evaluate inhibition. Increasing the tissue factor concentration from 20% to 40% (vol/vol) overcame the inhibitory mechanism in normal plasma but not in factor VII-deficient plasma supplemented with a low concentration of factor VII. A second wave of factor IX activation obtained by a second addition of tissue factor to plasma with a normal factor VII concentration was almost abolished by supplementing the reaction mixture with additional EPI and factor X. Factor Xa's active site was necessary for factor Xa's contribution to inhibition, but preliminary incubation of factor Xa with EPI in the absence of factor VIIa/tissue factor complex or of factor VIIa/tissue factor complex in the absence of EPI did not replace the need for the simultaneous presence of factor Xa, factor VIIa/tissue factor, calcium, and EPI in an inhibitory reaction mixture. Inhibition of factor VIIa/tissue factor was reversible; both tissue factor and factor VIIa activity could be recovered from a dissociated, inhibited factor VIIa/tissue factor complex. EPI appeared to bind to a factor VIIa/tissue factor complex formed in the presence of factor Xa but not to a factor VIIa/tissue factor complex formed in the absence of factor Xa.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 218-226 ◽  
Author(s):  
LV Rao ◽  
SP Bajaj ◽  
SI Rapaport

We have studied factor VII activation by measuring the ratio of factor VII clotting to coupled amidolytic activity (VIIc/VIIam) and cleavage of 125I-factor VII. In purified systems, a low concentration of Xa or a higher concentration of IXa rapidly activated 125I-factor VII, yielding a VIIc/VIIam ratio of 25 and similar gel profiles of heavy and light chain peaks of VIIa. On further incubation, VIIa activity diminished and a third 125I-peak appeared. When normal blood containing added 125I- factor VII was clotted in a glass tube, the VIIc/VIIam ratio rose fivefold, and 20% of the 125I-factor VII was cleaved. Clotting normal plasma in an activated partial thromboplastin time (APTT) system yielded a VIIc/VIIam ratio of 25 and over 90% cleavage of 125I-factor VII. Clotting factor XII-deficient plasma preincubated with antibodies to factor X in an APTT system with added XIa yielded a VIIc/VIIam ratio of 19 and about 60% cleavage, which indicates that IXa, at a concentration achievable in plasma, can effectively activate factor VII. Clotting normal plasma with undiluted tissue factor yielded a VIIc/VIIam ratio of 15 to 20 and 60% cleavage of 125I-factor VII, whereas clotting plasma with diluted tissue factor activated factor VII only minimally. We conclude that both Xa and IXa can function as significant activators of factor VII in in vitro clotting mixtures but believe that only small amounts of factor VII may be activated in vivo during hemostasis.


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3738-3748 ◽  
Author(s):  
LV Rao ◽  
T Williams ◽  
SI Rapaport

Experiments were performed to evaluate activation of factor VII bound to relipidated tissue factor (TF) in suspension and to TF constitutively expressed on the surface of an ovarian carcinoma cell line (OC-2008). Activation was assessed by measuring cleavage of 125I- factor VII and by the ability of unlabeled factor VII to catalyze activation of a variant factor IX molecule that, after activation, cannot back-activate factor VII. Factor Xa was found to effectively activate factor VII bound to TF relipidated in either acidic or neutral phospholipid vesicles. Autoactivation of factor VII bound to TF in suspension was dependent on the preparation of TF apoprotein used and the technique of its relipidation. This highlights the need for caution in extrapolating data from TF in suspension to the activation of factor VII bound to cell surfaces during hemostasis. A relatively slow activation of factor VII bound to OC-2008 monolayers in the absence of added protease was observed consistently. Antithrombin in the presence or absence of heparin prevented this basal activation, whereas TF pathway inhibitor (TFPI/factor Xa complexes had only a limited inhibitory effect. Adding a substrate concentration of factor X markedly enhanced basal activation of factor VII, but both TFPI/factor Xa and antithrombin/heparin abolished this enhancement. Overall, our data are compatible with the hypothesis that not all factor VII/TF complexes formed at a site of tissue injury are readily activated to factor VIIa (VIIa)/TF complexes during hemostasis. The clinical significance of this is discussed.


Blood ◽  
1982 ◽  
Vol 60 (5) ◽  
pp. 1143-1150 ◽  
Author(s):  
DR Masys ◽  
SP Bajaj ◽  
SI Rapaport

Factor VII clotting activity increases about five-fold when blood is clotted in glass. Prior studies suggested that this results from activation induced by activated factor IX (IXa). However, in purified systems containing phospholipid and calcium, activated factor X (Xa) is known to activate factor VII rapidly. Therefore, we studied activation of factor VII by IXa and X, in systems using purified human factors. Concentrations of IXa and Xa were calculated from total activated protein concentrations rather than from active site concentrations. In the presence of phospolipid and calcium, both IXa and Xa activated factor VII 25-fold; however, Xa was roughly 800 times more efficient than IXa. Without added phospholipid, activation of factor VII by both Xa and IXa was markedly slowed, and Xa was roughly 20 times more efficient than IXa. When both phospholipid and calcium were omitted, activation of factor VII by either enzyme was negligible. Adding normal prothrombin, but not decarboxylated prothrombin, substantially slowed activation of factor VII by both Xa and IXa. Adding thrombin-activated factor VIII and antithrombin-III did not change rates of factor VII activation by either enzyme. These results from purified systems do not provide an explanation for the prior data from plasma systems.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 645-651 ◽  
Author(s):  
LV Rao ◽  
SI Rapaport

We have extended earlier studies (Blood 66:204, 1985) of a mechanism of inhibition of factor VIIa/tissue factor activity that requires a plasma component (called herein extrinsic pathway inhibitor or EPI) and factor Xa. An activated peptide release assay using 3H-factor IX as a substrate was used to evaluate inhibition. Increasing the tissue factor concentration from 20% to 40% (vol/vol) overcame the inhibitory mechanism in normal plasma but not in factor VII-deficient plasma supplemented with a low concentration of factor VII. A second wave of factor IX activation obtained by a second addition of tissue factor to plasma with a normal factor VII concentration was almost abolished by supplementing the reaction mixture with additional EPI and factor X. Factor Xa's active site was necessary for factor Xa's contribution to inhibition, but preliminary incubation of factor Xa with EPI in the absence of factor VIIa/tissue factor complex or of factor VIIa/tissue factor complex in the absence of EPI did not replace the need for the simultaneous presence of factor Xa, factor VIIa/tissue factor, calcium, and EPI in an inhibitory reaction mixture. Inhibition of factor VIIa/tissue factor was reversible; both tissue factor and factor VIIa activity could be recovered from a dissociated, inhibited factor VIIa/tissue factor complex. EPI appeared to bind to a factor VIIa/tissue factor complex formed in the presence of factor Xa but not to a factor VIIa/tissue factor complex formed in the absence of factor Xa.


Sign in / Sign up

Export Citation Format

Share Document