scholarly journals Fetal hemoglobin levels and beta s globin haplotypes in an Indian populations with sickle cell disease

Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1742-1746 ◽  
Author(s):  
AE Kulozik ◽  
BC Kar ◽  
RK Satapathy ◽  
BE Serjeant ◽  
GR Serjeant ◽  
...  

Abstract To further explore the cause for variation in hemoglobin F (Hb F) levels in sickle cell disease, the beta globin restriction-fragment length polymorphism haplotypes were determined in a total of 303 (126 SS, 141 AS, 17 S beta degrees, 7 A beta, degrees and 12 AA) Indians from the state of Orissa. The beta s globin gene was found to be linked almost exclusively to a beta S haplotype ( -++-), which is also common in Saudi Arabian patients from the Eastern Province (referred to as the Asian beta s haplotype). By contrast, the majority of beta A and beta degree thalassemia globin genes are linked to haplotypes common in all European and Asian populations (+-----[+/-]; --++-++). Family studies showed that there is a genetic factor elevating Hb F levels dominantly in homozygotes (SS). This factor appears to be related to the Asian beta s globin haplotype, and a mechanism for its action is discussed. There is also a high prevalence of an independent Swiss type hereditary persistence of fetal hemoglobin (HPFH) determinant active in both the sickle cell trait and in sickle cell disease.

Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1742-1746
Author(s):  
AE Kulozik ◽  
BC Kar ◽  
RK Satapathy ◽  
BE Serjeant ◽  
GR Serjeant ◽  
...  

To further explore the cause for variation in hemoglobin F (Hb F) levels in sickle cell disease, the beta globin restriction-fragment length polymorphism haplotypes were determined in a total of 303 (126 SS, 141 AS, 17 S beta degrees, 7 A beta, degrees and 12 AA) Indians from the state of Orissa. The beta s globin gene was found to be linked almost exclusively to a beta S haplotype ( -++-), which is also common in Saudi Arabian patients from the Eastern Province (referred to as the Asian beta s haplotype). By contrast, the majority of beta A and beta degree thalassemia globin genes are linked to haplotypes common in all European and Asian populations (+-----[+/-]; --++-++). Family studies showed that there is a genetic factor elevating Hb F levels dominantly in homozygotes (SS). This factor appears to be related to the Asian beta s globin haplotype, and a mechanism for its action is discussed. There is also a high prevalence of an independent Swiss type hereditary persistence of fetal hemoglobin (HPFH) determinant active in both the sickle cell trait and in sickle cell disease.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1619-1619 ◽  
Author(s):  
Andrew Campbell ◽  
Osamu Tanabe ◽  
Rebekah Urbonya ◽  
Andrea Mathias ◽  
Lihong Shi ◽  
...  

Abstract Abstract 1619 Background: Sickle Cell Disease (SCD) is a chronic debilitating hematologic condition caused by a missense mutation within the adult beta globin gene leading to significant morbidity and mortality. Increased Fetal Hemoglobin production has been shown to significantly ameliorate SCD symptoms and improve survival. A novel specific DNA-binding factor DRED (direct repeat erythroid definitive) was recently identified that regulated epsilon and gamma globin gene expression (Tanimoto et al Genes Dev 2000). Purification of DRED revealed that it harbored the nuclear orphan hormone receptors, TR2/TR4, as its DNA binding core (Tanabe et al EMBO 2002). Overexpression of TR2/TR4 Transgene within Human Beta Globin Yeast Artificial Chromosome Transgenic Mice resulted in 4-fold induction of the gamma globin mRNA levels (Tanabe et al EMBO 2007). Therefore, we wanted to determine if the overexpression of TR2/TR4 within a humanized sickle cell disease model would result in fetal hemoglobin induction. Methods: Humanized Homozygous Knock-In UAB-Sickle Cell (UAB-Hbahα/hα Hbbhβs/hβs) Mice (Wu et al Blood 2006) was mated to TR2/TR4 Overexpressing Mice (TgTR2/TR4) to generate homozygous SS-TR2/TR4 compound heterozygotes (UAB-Hba hα/hα Hbb hβs/hβs TgTR2/TR4). We generated four 2–3 month old homozygous SS-TR2/TR4 transgenic mice and compared hemoglobin F levels, complete blood cell counts and % body weight (liver, spleen, kidney) to six 2–3 month old homozygous SS mice (Hbahα/hα Hbb hβs/hβs)without the overexpressing TgTR2/TR4. Tail PCR genotyping of all sickle cell mice (with and without TgTR2/TR4) and Hemoglobin F(Hgb F) and Sickle (HgbS) levels were confirmed by HPLC Hemoglobin electrophoresis. Results: The mean Hgb F: 7.8% (n=6, sd 1.63+/−) in the homozygous SS control mice vs. 16.5% (n=4, sd 2.64+/−)in the homozygous SS-TR2/4 Mice (2 Fold higher). Hematologic profile revealed a mean Hct: 25.2 (n=6, sd 5.50 +/−) mean MCV: 75.4 (n=6, sd 10+/−) and a mean WBC: 22.6 (n= 6, sd 13.9 +/−) in the homozygous SS control mice vs. a mean Hct: 31.25(n=4, sd 6.89+/−), mean MCV: 61(n=4, sd 3.5+/−) mean WBC: 16.3(n= 4, sd 5.99+/−) in the homozygous SS-TR2/TR4 mice. Lastly, initial organ (spleen, liver, kidney) pathology evaluation revealed decreased % body weight (bw) in homozygous SS TR2/TR4 Mice vs. homozygous SS controls: 1) Spleen %bw: 4.3% vs. 3.5% TgTR2/TR4), 2) Liver % bw: 8.8% vs. 7.7% TgTR2/TR4), and 3) Kidney %bw: 1.14% vs. 1.02% TgTR2/TR4). Conclusions: Our preliminary analysis revealed that TR2/TR4 overexpression within a humanized sickle cell disease mouse model resulted in a 2-fold induction of fetal hemoglobin based on HPLC hemoglobin electrophoresis. Further, increased TR2/TR4 overexpression improved anemia and organomegaly within sickle cell disease mice. TR2/TR4 may be an attractive target for fetal hemoglobin induction for the treatment of sickle cell disease. Ongoing studies will determine if TR2/TR4 decreases organ specific disease pathology. We will also determine the cellular distribution of fetal hemoglobin in future studies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 102 (12) ◽  
pp. 3865-3870 ◽  
Author(s):  
Yogen Saunthararajah ◽  
Cheryl A. Hillery ◽  
Don Lavelle ◽  
Robert Molokie ◽  
Louise Dorn ◽  
...  

Abstract Fetal hemoglobin (HbF) decreases polymerization of sickle hemoglobin (HbS) and improves outcomes in sickle cell disease (SSD). Therefore, a therapeutic goal in SSD is pharmacologic reactivation of HbF. Silencing of the γ-globin (HbF) gene is associated with DNA methylation. The cytosine analog 5-aza-2′-deoxycytidine (decitabine) hypomethylates DNA by inhibiting DNA methyltransferase. We examined if subcutaneous decitabine could increase HbF levels and improve SSD pathophysiology without cytotoxicity. Eight symptomatic SSD patients resistant or intolerant of standard treatment with hydroxyurea received decitabine 0.2 mg/kg subcutaneously 1 to 3 times per week in 2 cycles of 6-week duration. Treatment decreased neutrophils and increased mean HbF (6.5% to 20.4%, P < .0001) and mean total hemoglobin (76 to 96 g/L [7.6 to 9.6 g/dL], P < .001). Features of vaso-occlusive crisis pathophysiology such as red cell adhesion, endothelial damage, and coagulation pathway activity significantly improved. γ-Globin gene promoter methylation decreased, and platelets and the proportion of megakaryocytes and erythroid cells in the marrow increased without a decrease in marrow cellularity, consistent with a DNA hypomethylating, noncytotoxic mechanism of action. Weekly subcutaneous decitabine produces cumulative increases in HbF and total hemoglobin through a noncytotoxic mechanism of action. Chronic dosing and sustained increases in hemoglobin F and total hemoglobin levels may be possible. Further studies in SSD and thalassemia are indicated.


Blood ◽  
1987 ◽  
Vol 70 (3) ◽  
pp. 716-720 ◽  
Author(s):  
BA Miller ◽  
M Salameh ◽  
M Ahmed ◽  
N Olivieri ◽  
G Antognetti ◽  
...  

Erythrocytes and progenitor-derived erythroblasts of sickle cell anemia patients from the Eastern Province of Saudi Arabia contain increased fetal hemoglobin and G gamma globin. A distinctive DNA polymorphism haplotype in the beta globin gene cluster (++- +-), tightly coupled to a C----T substitution at position -158 5′ to the cap site of the G gamma globin gene, is strongly associated with sickle cell disease in this region. To determine whether the increased fetal hemoglobin production and/or elevated G gamma globin content are tightly linked to this haplotype, we studied 55 members of five Saudi families in which sickle cell disease is present. The results did not suggest a tight linkage of the haplotype to increased fetal hemoglobin production. On the other hand, several sickle trait family members heterozygous for the haplotype had normal fetal hemoglobin production in culture but elevated G gamma to A gamma ratios in peripheral blood. This observation suggests that in this genetic background increased expression of the G gamma globin gene may occur without a measurable increase in total fetal hemoglobin production. The family studies also clearly demonstrate that increased fetal hemoglobin production by erythroid progenitors is dependent on zygosity for the sickle gene in this population. These findings strongly suggest that other factors, such as the products of genes stimulated by hemolytic stress or other genetic determinants associated with the Saudi beta S chromosome, may interact with the -158 C----T substitution and influence gamma globin gene expression in this population.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 331-338
Author(s):  
S Pissard ◽  
Y Beuzard

We describe a 0.5-kb region located 1.65 to 1.15 kb upstream of the G gamma fetal globin gene with three polymorphisms of erythroid and ubiquitous nuclear protein binding motifs (GATA, CRE, and a new protein binding site). These three polymorphisms result in high-affinity and low-affinity motifs for nuclear proteins, and are combined in four arrangements called pre-G gamma frameworks (pG gamma Fs). Each pG gamma F is linked with one of the major haplotypes of the beta-globin gene cluster observed in sickle cell disease (SCD) associated with different mean levels of hemoglobin F (Hb F) expression (P < .001). This strong linkage and the differing affinities suggest that this region may be involved in the modulation of Hb F expression in SCD.


Blood ◽  
1987 ◽  
Vol 70 (3) ◽  
pp. 716-720 ◽  
Author(s):  
BA Miller ◽  
M Salameh ◽  
M Ahmed ◽  
N Olivieri ◽  
G Antognetti ◽  
...  

Abstract Erythrocytes and progenitor-derived erythroblasts of sickle cell anemia patients from the Eastern Province of Saudi Arabia contain increased fetal hemoglobin and G gamma globin. A distinctive DNA polymorphism haplotype in the beta globin gene cluster (++- +-), tightly coupled to a C----T substitution at position -158 5′ to the cap site of the G gamma globin gene, is strongly associated with sickle cell disease in this region. To determine whether the increased fetal hemoglobin production and/or elevated G gamma globin content are tightly linked to this haplotype, we studied 55 members of five Saudi families in which sickle cell disease is present. The results did not suggest a tight linkage of the haplotype to increased fetal hemoglobin production. On the other hand, several sickle trait family members heterozygous for the haplotype had normal fetal hemoglobin production in culture but elevated G gamma to A gamma ratios in peripheral blood. This observation suggests that in this genetic background increased expression of the G gamma globin gene may occur without a measurable increase in total fetal hemoglobin production. The family studies also clearly demonstrate that increased fetal hemoglobin production by erythroid progenitors is dependent on zygosity for the sickle gene in this population. These findings strongly suggest that other factors, such as the products of genes stimulated by hemolytic stress or other genetic determinants associated with the Saudi beta S chromosome, may interact with the -158 C----T substitution and influence gamma globin gene expression in this population.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 331-338 ◽  
Author(s):  
S Pissard ◽  
Y Beuzard

Abstract We describe a 0.5-kb region located 1.65 to 1.15 kb upstream of the G gamma fetal globin gene with three polymorphisms of erythroid and ubiquitous nuclear protein binding motifs (GATA, CRE, and a new protein binding site). These three polymorphisms result in high-affinity and low-affinity motifs for nuclear proteins, and are combined in four arrangements called pre-G gamma frameworks (pG gamma Fs). Each pG gamma F is linked with one of the major haplotypes of the beta-globin gene cluster observed in sickle cell disease (SCD) associated with different mean levels of hemoglobin F (Hb F) expression (P < .001). This strong linkage and the differing affinities suggest that this region may be involved in the modulation of Hb F expression in SCD.


2016 ◽  
Vol 113 (38) ◽  
pp. 10661-10665 ◽  
Author(s):  
Lin Ye ◽  
Jiaming Wang ◽  
Yuting Tan ◽  
Ashley I. Beyer ◽  
Fei Xie ◽  
...  

Hereditary persistence of fetal hemoglobin (HPFH) is a condition in some individuals who have a high level of fetal hemoglobin throughout life. Individuals with compound heterozygous β-thalassemia or sickle cell disease (SCD) and HPFH have milder clinical manifestations. Using RNA-guided clustered regularly interspaced short palindromic repeats-associated Cas9 (CRISPR-Cas9) genome-editing technology, we deleted, in normal hematopoietic stem and progenitor cells (HSPCs), 13 kb of the β-globin locus to mimic the naturally occurring Sicilian HPFH mutation. The efficiency of targeting deletion reached 31% in cells with the delivery of both upstream and downstream breakpoint guide RNA (gRNA)-guided Staphylococcus aureus Cas9 nuclease (SaCas9). The erythroid colonies differentiated from HSPCs with HPFH deletion showed significantly higher γ-globin gene expression compared with the colonies without deletion. By T7 endonuclease 1 assay, we did not detect any off-target effects in the colonies with deletion. We propose that this strategy of using nonhomologous end joining (NHEJ) to modify the genome may provide an efficient approach toward the development of a safe autologous transplantation for patients with homozygous β-thalassemia and SCD.


Blood ◽  
1953 ◽  
Vol 8 (5) ◽  
pp. 434-443 ◽  
Author(s):  
JAMES V. NEEL ◽  
HARVEY A. ITANO ◽  
JOHN S. LAWRENCE

Abstract A family of Greek derivation is described in which 2 out of 6 children examined exhibited a sickle cell type of anemia. The father of these children was found to have thalassemia minor and the mother the sickle cell trait. It is presumed that the anemia in the two children was due to simultaneous heterozygosity for the sickling and thalassemia genes. Biochemical studies with reference to the occurrence and amounts of normal, sickle cell, and fetal hemoglobin were carried out on the parents and the 6 children. The theoretic interpretation of the biochemical findings is discussed.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 555-555 ◽  
Author(s):  
Hassana Fathallah ◽  
Ali Taher ◽  
Ali Bazarbachi ◽  
George F. Atweh

Abstract A number of therapeutic agents including hydroxyurea, butyrate and decitabine have shown considerable promise in the treatment of sickle cell disease (SCD). However, the same agents have shown less clinical activity in β-thalassemia. As a first step towards understanding the molecular basis of the different clinical responses to these agents, we have studied the mechanisms of induction of fetal hemoglobin (HbF) by butyrate in BFU-E derived cells from 5 patients with SCD and 9 patients with β-thalassemia intermedia. Exposure to butyrate resulted in a dose-dependent augmentation of γ-globin mRNA levels in erythroid cells from patients with SCD. In contrast, induction of γ-globin expression in erythroid cells from patients with β-thalassemia intermedia was only seen at a high concentration of butyrate. The increase in γ-globin mRNA levels in patients with SCD and β-thalassemia intermedia was associated with opening of the DNA structure as manifested by decreased DNA methylation at the γ-globin promoters. Interestingly, butyrate exposure had markedly different effects on the expression of the β- and α-globin genes in the two categories of patients. Butyrate decreased the level of β-globin mRNA in 4 out of 5 patients with SCD (P = 0.04), while in β-thalassemia the levels of β-globin mRNA did not change in 7 patients and decreased in 2 patients after butyrate exposure (P = 0.12). Thus in patients with SCD, the effects of the induction of the γ-globin gene on the γ/(β+γ) mRNA ratios were further enhanced by the butyrate-mediated decreased expression of the β-globin gene. As a result, γ/(β+γ) mRNA ratios increased in all patients with SCD, with a mean increase of 31% (P = 0.002). In contrast, butyrate increased γ/(β+γ) mRNA ratios only in 4 out of 9 patients with β-thalassemia, with a more modest mean increase of 12% (P = 0.004). Interestingly, the decreased β-globin expression in patients with SCD was associated with closing of the DNA configuration as manifested by hypermethylation of DNA at the promoter of the β-globin gene while methylation of the same promoter did not change following butyrate exposure in patients with β-thalassemia intermedia. More surprisingly, the expression of the α-globin genes increased following butyrate exposure in 4 out of 9 patients with β-thalassemia, while the levels of α-globin mRNA decreased in 4 out of 5 patients with SCD. As a result, the favorable effects of the butyrate-induced increase in γ-globin gene expression on the α: non-α mRNA imbalance in patients with β-thalassemia intermedia were partly neutralized by the corresponding increase in α-globin gene expression. These differences may explain, at least in part, the more favorable effects of inducers of HbF in SCD than in β-thalassemia. Further studies are necessary to fully understand the molecular bases of the different responses to agents that induce HbF in patients with these disorders.


Sign in / Sign up

Export Citation Format

Share Document