scholarly journals Activation of human factor VII by factors IXa and Xa on human bladder carcinoma cells

Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1888-1895
Author(s):  
P Wildgoose ◽  
W Kisiel

Single chain factor VII is converted by limited proteolysis to its activated form, factor VIIa, by a number of blood coagulation proteases including factor IXa and factor Xa. We have determined the relative rate of human factor VII activation by human factors IXa and Xa in two different systems: one containing Ca++ and human bladder carcinoma (J82) cells, and the other containing Ca++ and mixed brain phospholipids. The rate of factor VII activation was determined by a one stage coagulation assay, and proteolytic cleavage of factor VII was assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting techniques. On a molar basis, factor Xa was sixfold more efficient than factor IXa beta in activating factor VII when the activation reaction occurs on J82 cell surfaces. In contrast, when incubation takes place in a suspension of mixed phospholipids, factor Xa was 18-fold more efficient in activating factor VII than factor IXa beta. In addition, factor IXa alpha activated factor VII at a rate approximately one-half that observed using factor IXa beta. In the absence of cells or phospholipids, no activation of factor VII by either factors IXa or Xa was observed. The addition of stoichiometric amounts of either recombinant human factor VIII (des B-domain) or plasma-derived factor VIIIa failed to augment the rate of factor VII activation by either factors IXa alpha or IXa beta. Likewise, purified human factor Va failed to influence the rate of factor VII activation by factor Xa in either system. Collectively, our studies reveal that J82 cells possess procoagulant phospholipid capable of readily supporting the activation of factor VII by either factors IXa beta or Xa. Our data also demonstrate that the relative ability of factor IXa beta and Xa to activate factor VII is significantly different when these reactions occur on tumor cell surfaces as compared with suspensions of mixed phospholipids.

Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1888-1895 ◽  
Author(s):  
P Wildgoose ◽  
W Kisiel

Abstract Single chain factor VII is converted by limited proteolysis to its activated form, factor VIIa, by a number of blood coagulation proteases including factor IXa and factor Xa. We have determined the relative rate of human factor VII activation by human factors IXa and Xa in two different systems: one containing Ca++ and human bladder carcinoma (J82) cells, and the other containing Ca++ and mixed brain phospholipids. The rate of factor VII activation was determined by a one stage coagulation assay, and proteolytic cleavage of factor VII was assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting techniques. On a molar basis, factor Xa was sixfold more efficient than factor IXa beta in activating factor VII when the activation reaction occurs on J82 cell surfaces. In contrast, when incubation takes place in a suspension of mixed phospholipids, factor Xa was 18-fold more efficient in activating factor VII than factor IXa beta. In addition, factor IXa alpha activated factor VII at a rate approximately one-half that observed using factor IXa beta. In the absence of cells or phospholipids, no activation of factor VII by either factors IXa or Xa was observed. The addition of stoichiometric amounts of either recombinant human factor VIII (des B-domain) or plasma-derived factor VIIIa failed to augment the rate of factor VII activation by either factors IXa alpha or IXa beta. Likewise, purified human factor Va failed to influence the rate of factor VII activation by factor Xa in either system. Collectively, our studies reveal that J82 cells possess procoagulant phospholipid capable of readily supporting the activation of factor VII by either factors IXa beta or Xa. Our data also demonstrate that the relative ability of factor IXa beta and Xa to activate factor VII is significantly different when these reactions occur on tumor cell surfaces as compared with suspensions of mixed phospholipids.


1984 ◽  
Vol 223 (3) ◽  
pp. 607-615 ◽  
Author(s):  
K Mertens ◽  
R M Bertina

The role of the cofactors Ca2+ and phospholipid in the activation of human Factor X by Factor IXa was investigated. By use of a sensitive spectrophotometric Factor Xa assay, it was demonstrated that human Factor IXa can activate Factor X in the absence of cofactors. The presence of Ca2+ as the only cofactor resulted in a 7-fold stimulation of the Factor Xa formation. Kinetic analysis of the Ca2+-stimulated reaction showed that the apparent Km of Factor X was 4.6 microM, whereas the apparent Vmax. for Factor Xa formation was 0.0088 mol of Xa/min per mol of IXa. The presence of phospholipid as the only cofactor had no effect on the rate of Factor Xa formation. However, a several-hundred-fold stimulation was observed when Ca2+ and phospholipid were present in combination. The activation of Factor X in the presence of Ca2+ and phospholipid was found to be kinetically heterogeneous, involving both phospholipid-bound and free reactants. Quantitative data concerning the phospholipid binding of Factors IXa and X were used to study the relation between the rate of Factor Xa formation and the binding of enzyme and substrate to the phospholipid membrane. The results support the hypothesis that phospholipid-bound Factor X is the substrate in the phospholipid-stimulated reaction; however, phospholipid-bound and free Factor IXa seem to be equally efficient in catalysing the activation of phospholipid-bound Factor X.


1976 ◽  
Vol 35 (02) ◽  
pp. 295-304 ◽  
Author(s):  
B Østerud ◽  
M Miller-Andersson ◽  
U Abildgaard ◽  
H Prydz

SummaryAntithrombin III, purified to homogeneity according to Polyacrylamide gel disc electrophoresis and immunoelectrophoresis, inhibited the activity of purified factor IXa and Xa, whereas factor VII was not inhibited either in the active or in the native form.Antithrombin III is the single most important inhibitor of factor Xa in plasma. Factor Xa does not, however, reduce the activity of antithrombin III against thrombin.


1960 ◽  
Vol 04 (02) ◽  
pp. 253-260 ◽  
Author(s):  
Franco Gobbi

SummaryThe fractionation properties of human Factor VIII (antihaemophilic factor, AHF, antihaemophilic globulin) have been studied using a plasma of congenital afibrinogenaemia as a starting material.From a fibrinogen-free plasma, Factor VIII does not precipitate with ethanol at a final concentration of 8%; on the contrary the maximum yield is reached at an ethanol concentration of 25%.With a precipitation method carried out by a one to ten dilution of plasma with distilled water and acidification by N/10 hydrochloric acid to a pFI 5.2, Factor VIII does not precipitate with the euglobulin fraction; when normal plasma is used, such a precipitation is almost complete.With the salting-out fractionation method by ammonium sulphate, Factor VIII precipitates at a concentration between 25 and 33% of saturation either from fibrinogen-free and from normal human plasma.A non-specific thromboplastic activity appears in the fractions prepared by every method. This activity, which is probably due to the activation of seric accelerators, is easily removed by Al(OH)s adsorption. Thus, in order to insure the specificity of Factor VIII assays, the preliminary adsorption of the fractions is indispensable before testing their antihaemophilic activity.Fibrinogen and Factor VIII have different and definite precipitation patterns. When these two factors are associated the fractionation properties of AHF appear quite modified, showing a close similarity to those of fibrinogen. This fact can explain the technical difficulties encountered in the attempt to purify the antihaemophilic factor, and the lack of reproducible procedures for removing fibrinogen without affecting Factor VII.


1982 ◽  
Vol 47 (02) ◽  
pp. 096-100 ◽  
Author(s):  
K Mertens ◽  
R M Bertina

SummaryThe intrinsic activation of human factor X has been studied in a system consisting of purified factors and in plasma. In both these systems factor Xa stimulated the activation of factor X by factor IXa plus factor VIII This is due to the activation of factor VIII by factor Xa. When this factor Xa is formed via the extrinsic pathway, the extrinsic factor X activator functions as a stimulator of the intrinsic factor X activator.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1330-1335 ◽  
Author(s):  
Cornelis van 't Veer ◽  
Neal J. Golden ◽  
Kenneth G. Mann

Factor VII circulates as a single chain inactive zymogen (10 nmol/L) and a trace (∼10-100 pmol/L) circulates as the 2-chain form, factor VIIa. Factor VII and factor VIIa were studied in a coagulation model using plasma concentrations of purified coagulation factors with reactions initiated with relipidated tissue factor (TF). Factor VII (10 nmol/L) extended the lag phase of thrombin generation initiated by 100 pmol/L factor VIIa and low TF. With the coagulation inhibitors TFPI and AT-III present, factor VII both extended the lag phase of the reaction and depressed the rate of thrombin generation. The inhibition of factor Xa generation by factor VII is consistent with its competition with factor VIIa for TF. Thrombin generation with TF concentrations >100 pmol/L was not inhibited by factor VII. At low tissue factor concentrations (<25 pmol/L) thrombin generation becomes sensitive to the absence of factor VIII. In the absence of factor VIII, factor VII significantly inhibits TF-initiated thrombin generation by 100 pmol/L factor VIIa. In this hemophilia A model, approximately 2 nmol/L factor VIIa is needed to overcome the inhibition of physiologic (10 nmol/L) factor VII. At 10 nmol/L, factor VIIa provided a thrombin generation response in the hemophilia model (0% factor VIII, 10 nmol/L factor VII) equivalent to that observed with normal plasma, (100% factor VIII, 10 nmol/L factor VII, 100 pmol/L factor VIIa). These results suggest that the therapeutic efficacy of factor VIIa in the medical treatment of hemophiliacs with inhibitors is, in part, based on overcoming the factor VII inhibitory effect.


1988 ◽  
Vol 170 (3) ◽  
pp. 521-528 ◽  
Author(s):  
Peter R. GANZ ◽  
Eilleen S. TACKABERRY ◽  
Douglas S. PALMER ◽  
Gail ROCK

Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 476-482
Author(s):  
MB Hultin ◽  
J Jesty

The activation and inactivation of human factor VIII by thrombin have been investigated by the use of thrombin inhibitors. The addition of inhibitors to nonactivated factor VIII blocks activation by thrombin. In contrast, their addition to factor VIII activated with thrombin does not block inactivation, but causes an initial period of decay that is more rapid than in the absence of inhibitor. This effect was seen only with protease inhibitors that inhibit thrombin. After the initial decay, low levels of factor VIII coagulant activity persist in the presence of inhibitors, but an assay specific for activated factor VIII showed this to be largely a result of the persistence of nonactivated factor VIII. Only in the case of reversible inhibition is activated factor VIII present in this plateau phase. Possible mechanisms that would account for these observations were studied by iterative computer simulation of model reactions. Two classes were considered: (formula: see text). The experimental results are inconsistent with the first mechanism, which predicts that thrombin indicators should stabilize activated factor VIII (VIIIt). Alternative mechanisms were studied where activation is thrombin-dependent, but inactivation is a first- order reaction (mechanism 2). This family of mechanisms includes those where VIIIt is an VIII. thrombin complex. Simulation of the addition of thrombin inhibitors to such model systems shows the initial rapid decay of activity characteristic of the experimental observations and predicts qualitatively the different effects of reversible and irreversible inhibitors that are observed in the plateau phase. These results argue strongly against a two-cleavage model for the activation and inactivation of factor VII by thrombin and support a one-cleavage model in which inactivation is due to first-order decay. In addition, they provide a plausible mechanistic explanation for the fact that serine protease inhibitors appear to inhibit thrombin-activated factor VIII.


Sign in / Sign up

Export Citation Format

Share Document