Inhibition of thrombin generation by the zymogen factor VII: implications for the treatment of hemophilia A by factor VIIa

Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1330-1335 ◽  
Author(s):  
Cornelis van 't Veer ◽  
Neal J. Golden ◽  
Kenneth G. Mann

Factor VII circulates as a single chain inactive zymogen (10 nmol/L) and a trace (∼10-100 pmol/L) circulates as the 2-chain form, factor VIIa. Factor VII and factor VIIa were studied in a coagulation model using plasma concentrations of purified coagulation factors with reactions initiated with relipidated tissue factor (TF). Factor VII (10 nmol/L) extended the lag phase of thrombin generation initiated by 100 pmol/L factor VIIa and low TF. With the coagulation inhibitors TFPI and AT-III present, factor VII both extended the lag phase of the reaction and depressed the rate of thrombin generation. The inhibition of factor Xa generation by factor VII is consistent with its competition with factor VIIa for TF. Thrombin generation with TF concentrations >100 pmol/L was not inhibited by factor VII. At low tissue factor concentrations (<25 pmol/L) thrombin generation becomes sensitive to the absence of factor VIII. In the absence of factor VIII, factor VII significantly inhibits TF-initiated thrombin generation by 100 pmol/L factor VIIa. In this hemophilia A model, approximately 2 nmol/L factor VIIa is needed to overcome the inhibition of physiologic (10 nmol/L) factor VII. At 10 nmol/L, factor VIIa provided a thrombin generation response in the hemophilia model (0% factor VIII, 10 nmol/L factor VII) equivalent to that observed with normal plasma, (100% factor VIII, 10 nmol/L factor VII, 100 pmol/L factor VIIa). These results suggest that the therapeutic efficacy of factor VIIa in the medical treatment of hemophiliacs with inhibitors is, in part, based on overcoming the factor VII inhibitory effect.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-17
Author(s):  
Dougald Monroe ◽  
Mirella Ezban ◽  
Maureane Hoffman

Background.Recently a novel bifunctional antibody (emicizumab) that binds both factor IXa (FIXa) and factor X (FX) has been used to treat hemophilia A. Emicizumab has proven remarkably effective as a prophylactic treatment for hemophilia A; however there are patients that still experience bleeding. An approach to safely and effectively treating this bleeding in hemophilia A patients with inhibitors is recombinant factor VIIa (rFVIIa). When given at therapeutic levels, rFVIIa can enhance tissue factor (TF) dependent activation of FX as well as activating FX independently of TF. At therapeutic levels rFVIIa can also activate FIX. The goal of this study was to assess the role of the FIXa activated by rFVIIa when emicizumab is added to hemophilia A plasma. Methods. Thrombin generation assays were done in plasma using 100 µM lipid and 420 µM Z-Gly-Gly-Arg-AMC with or without emicizumab at 55 µg/mL which is the clinical steady state level. The reactions were initiated with low (1 pM) tissue factor (TF). rFVIIa was added at concentrations of 25-100 nM with 25 nM corresponding to the plasma levels achieved by a single clinical dose of 90 µg/mL. To study to the role of factor IX in the absence of factor VIII, it was necessary to create a double deficient plasma (factors VIII and IX deficient). This was done by taking antigen negative hemophilia B plasma and adding a neutralizing antibody to factor VIII (Haematologic Technologies, Essex Junction, VT, USA). Now varying concentrations of factor IX could be reconstituted into the plasma to give hemophilia A plasma. Results. As expected, in the double deficient plasma with low TF there was essentially no thrombin generation. Also as expected from previous studies, addition of rFVIIa to double deficient plasma gave a dose dependent increase in thrombin generation through activation of FX. Interestingly addition of plasma levels of FIX to the rFVIIa did not increase thrombin generation. Starting from double deficient plasma, as expected emicizumab did not increase thrombin generation since no factor IX was present. Also, in double deficient plasma with rFVIIa, emicizumab did not increase thrombin generation. But in double deficient plasma with FIX and rFVIIa, emicizumab significantly increased thrombin generation. The levels of thrombin generation increased in a dose dependent fashion with higher concentrations of rFVIIa giving higher levels of thrombin generation. Conclusion. Since addition of FIX to the double deficient plasma with rFVIIa did not increase thrombin generation, it suggests that rFVIIa activation of FX is the only source of the FXa needed for thrombin generation. So in the absence of factor VIII (or emicizumab) FIX activation does not contribute to thrombin generation. However, in the presence of emicizumab, while rFVIIa can still activate FX, FIXa formed by rFVIIa can complex with emicizumab to provide an additional source of FX activation. Thus rFVIIa activation of FIX explains the synergistic effect in thrombin generation observed when combining rFVIIa with emicizumab. The generation of FIXa at a site of injury is consistent with the safety profile observed in clinical use. Disclosures Monroe: Novo Nordisk:Research Funding.Ezban:Novo Nordisk:Current Employment.Hoffman:Novo Nordisk:Research Funding.


Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 3067-3072 ◽  
Author(s):  
Cornelis van ‘t Veer ◽  
Neal J. Golden ◽  
Michael Kalafatis ◽  
Paolo Simioni ◽  
Rogier M. Bertina ◽  
...  

Abstract The classification of factor VIII deficiency, generally used based on plasma levels of factor VIII, consists of severe (<1% normal factor VIII activity), moderate (1% to 4% factor VIII activity), or mild (5% to 25% factor VIII activity). A recent communication described four individuals bearing identical factor VIII mutations. This resulted in a severe bleeding disorder in two patients who carried a normal factor V gene, whereas the two patients who did not display severe hemophilia were heterozygous for the factor VLEIDEN mutation, which leads to the substitution of Arg506 → Gln mutation in the factor V molecule. Based on the factor VIII level measured using factor VIII–deficient plasma, these two patients were classified as mild/moderate hemophiliacs. We studied the condition of moderate to severe hemophilia A combined with the factor VLEIDEN mutation in vitro in a reconstituted model of the tissue factor pathway to thrombin. In the model, thrombin generation was initiated by relipidated tissue factor and factor VIIa in the presence of the coagulation factors X, IX, II, V, and VIII and the inhibitors tissue factor pathway inhibitor, antithrombin-III, and protein C. At 5 pmol/L initiating factor VIIa⋅tissue factor, a 10-fold higher peak level of thrombin formation (350 nmol/L), was observed in the system in the presence of plasma levels of factor VIII compared with reactions without factor VIII. Significant increase in thrombin formation was observed at factor VIII concentrations less than 42 pmol/L (∼6% of the normal factor VIII plasma concentration). In reactions without factor VIII, in which thrombin generation was downregulated by the addition of protein C and thrombomodulin, an increase of thrombin formation was observed with the factor VLEIDEN mutation. The level of increase in thrombin generation in the hemophilia A situation was found to be dependent on the factor VLEIDEN concentration. When the factor VLEIDEN concentration was varied from 50% to 150% of the normal plasma concentration, the increase in thrombin generation ranged from threefold to sevenfold. The data suggested that the analysis of the factor V genotype should be accompanied by a quantitative analysis of the plasma factor VLEIDEN level to understand the effect of factor VLEIDEN in hemophilia A patients. The presented data support the hypothesis that the factor VLEIDEN mutation can increase thrombin formation in severe hemophilia A.


1991 ◽  
Vol 66 (03) ◽  
pp. 283-291 ◽  
Author(s):  
Victor J J Bom ◽  
Victor W M van Hinsbergh ◽  
Hanneke H Reinalda-Poot ◽  
Ramon W Mohanlal ◽  
Rogier M Bertina

SummaryIn previous kinetic studies, the catalytic efficiency of the activation of human coagulation factors IX and X by factor VIIa in the presence of purified tissue factor apoprotein was found to be essentially equal. These activation reactions were now studied on the surface of human umbilical vein endothelial cells. The cells were stimulated with endotoxin to express tissue factor. This tissue factor activity was saturable with factor VIIa and could be inhibited by rabbit antibodies against human tissue factor apoprotein. Only stimulated cells supported factor VIIa activity. No difference in the reactivity of factor VII and VIIa was observed in the presence of factor X, due to rapid feedback activation of factor VII by factor Xa. However, the activation of factor IX by factor VII shows a 10 min lag-phase, which reflects that the activation of factor VII by factor IXa is a less efficient process. The kinetic parameters for the factor VIIa dependent activation of factor IX and factor X on the endothelial surface were: Km 0.09 εM, Vmax 0.13 pmol/min, and Km 0.071 εM, Vmax 0.41 pmol/min, respectively. The same ratio between the Vmax for factor X and factor IX activation was observed as in a cell free system. However, the Km of factor IX was 4-fold higher on the endothelial surface than in the cell free system. Together, these kinetic parameters will favour factor X activation 5-fold over factor IX activation at physiological concentrations of these proteins.The activation of factor X by factor VIIa on the endothelial surface was characterized by a short lag-phase, which was absent in factor IX activation. Further, both the activation of factor X and factor IX were down regulated by factor Xa.


1999 ◽  
Vol 82 (08) ◽  
pp. 201-208 ◽  
Author(s):  
Steven Pipe ◽  
Randal Kaufman

IntroductionHemostasis requires a cascade of proteolytic reactions that occurs on the surfaces of damaged or activated cells, such as platelets, white blood cells, and endothelial cells. Initial damage to a blood vessel results in platelet adhesion to the subendothelium mediated by von Willebrand factor (vWF). Subsequently, platelet activation and aggregation occur. Protease complexes assemble on the surface of activated cells and are converted sequentially to their proteolytically active forms to result in a localized burst of thrombin generation and the conversion of soluble fibrinogen to insoluble fibrin. Activation of the extrinsic coagulation pathway occurs to form a factor VIIa—tissue factor complex on activated or damaged endothelial cells. In turn, factor VIIa activates the intrinsic pathway of blood coagulation by activating factor IXa, which in turn interacts with activated factor VIIIa, in the presence of calcium and negatively-charged phospholipids, to convert factor X to factor Xa. Factor Xa then acts with its cofactor factor Va, in the presence of calcium and negatively-charged phospholipids, to convert prothrombin to thrombin. Initial factor Xa and thrombin generation feeds back to activate cofactors VIII and V. Activation of these cofactors in the intrinsic pathway serves to amplify thrombin generation. The importance of this cascade in hemostasis is evident from the characterization of individuals who are defective in proteins that function in this cascade. The most common of these disorders, a deficiency of factor VIII that results in hemophilia A, was documented more than 1,700 years ago in the Talmud.1 The genetics of hemophilia A was described in the early 1800s, and transfusion of whole blood was shown to successfully treat a hemophilia A-associated bleeding episode by 1840.2,3 Although the presence of factor VIII in plasma was demonstrated in 19114 and its role in hemostasis was described in 1937,5 a detailed biochemical and structural characterization of factor VIII was achieved only within the last 20 years. Prior to 1980, the relationship between hemophilia A and von Willebrand’s disease generated a great deal of confusion because the autosomally-inherited von Willebrand’s disease is associated with some degree of factor VIII deficiency, although hemophilia is an X-linked disease. In addition, early preparations of antihemophilia factor not only corrected the clotting time of hemophilic plasma, but also restored platelet adhesion and aggregation defects in the plasma of patients with von Willebrand’s disease. It is now appreciated that factor VIII and vWF are two separate proteins that exist as a complex in plasma. They are under separate genetic control, have distinct biochemical and immunological properties, and have unique and essential physiological functions (Table 1). Factor VIII is the X-linked gene product that accelerates the factor IXa-mediated activation of factor X by four orders of magnitude. vWF is an autosomal gene product that is essential for platelet adhesion to the subendothelium and for ristocetin-induced platelet aggregation. In addition, vWF plays a critical role in the regulation of factor VIII activity by 1) stabilizing factor VIII on secretion from the cell;6,7 2) requiring the survival of factor VIII in plasma,8,9 3) protecting factor VIII from activation by factor Xa and inactivation by activated protein C;10,11 and 4) preventing factor VIII from binding to phospholipids and activated platelets.3,12 It is likely that vWF mediates its inhibitory properties on factor VIII by preventing factor VIII from binding to phospholipids, an interaction required for both factor Xa- and APC-mediated cleavage of factor VIII. Because vWF and factor VIII are found in plasma as a complex and vWF stabilizes factor VIII and regulates its activity, the activities of these two proteins are intimately intertwined.


1991 ◽  
Vol 65 (02) ◽  
pp. 139-143 ◽  
Author(s):  
Cynthia H Gemmell ◽  
Vincet T Turitto ◽  
Yale Nemerson

SummaryA novel reactor recently described for studying phospholipiddependent blood coagulation reactions under flow conditions similar to those occurring in the vasculature has been further charactenzed. The reactor is a capitlary whose inner wall is coated with a stable phospholipid bilayer (or two bilayers) containing tissue factor, a transmembrane protein that is required for the enzymatic activation of factor X by factor VIIa. Perfusion of the capillary at wall shear rates ranging from 25 s−1 to 1,200 s−1 with purified bovine factors X and VIIa led to steady state factor Xa levels at the outlet. Assay were performed using a chromogenic substrate, SpectrozymeTMFXa, or by using a radiometric technique. In the absence of Ca2+ or factor VIIa there was no product formation. No difference was noted in the levels of factor Xa achieved when non-activated factor VII was perfused. Once steady state was achieved further factor Xa production continued in the absence of factor VIIa implying a very strong association of factor VIIa with the tissue factor in the phospholipid membrane. In agreement with static vesicle-type studies the reactor was sensitive to wall tissue factor concentration, temperature and the presence of phosphatidylserine in the bilayer.


1991 ◽  
Vol 66 (05) ◽  
pp. 559-564 ◽  
Author(s):  
Jerome M Teitel

SummaryAn experimental model incorporating cultured endothelial cells (EC) was used to study the "factor VIII bypassing" activity of prothrombin complex concentrates (PCC), a property exploited in the treatment of hemophiliacs with alloantibodies to factor VIII. Two PCC preparations were ineffective as stimuli of tissue factor expression by EC. However, incubation with a combination of PCC plus endotoxin (lipopolysaccharide, LPS) or tumor necrosis factor (TNF) induced much greater tissue factor expression than was seen in response to either substance alone. PCC expressed an additional direct procoagulant activity at the EC surface, which could not be attributed to either thrombin or factor Xa, and which was diminished by an anti-tissue factor antibody. Therefore factor VIIa, which was detectable in both PCC preparations, likely provided this additional direct procoagulant activity at the EC surface. We also excluded the possibility that coagulation proteases contained in or generated in the presence of PCC are protected from inactivation by AT III. Therefore, PCC can indirectly bypass factor VIII by enhancing induced endothelial tissue factor expression, and also possess direct procoagulant activity, probably mediated by factor VIIa.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 645-651 ◽  
Author(s):  
LV Rao ◽  
SI Rapaport

Abstract We have extended earlier studies (Blood 66:204, 1985) of a mechanism of inhibition of factor VIIa/tissue factor activity that requires a plasma component (called herein extrinsic pathway inhibitor or EPI) and factor Xa. An activated peptide release assay using 3H-factor IX as a substrate was used to evaluate inhibition. Increasing the tissue factor concentration from 20% to 40% (vol/vol) overcame the inhibitory mechanism in normal plasma but not in factor VII-deficient plasma supplemented with a low concentration of factor VII. A second wave of factor IX activation obtained by a second addition of tissue factor to plasma with a normal factor VII concentration was almost abolished by supplementing the reaction mixture with additional EPI and factor X. Factor Xa's active site was necessary for factor Xa's contribution to inhibition, but preliminary incubation of factor Xa with EPI in the absence of factor VIIa/tissue factor complex or of factor VIIa/tissue factor complex in the absence of EPI did not replace the need for the simultaneous presence of factor Xa, factor VIIa/tissue factor, calcium, and EPI in an inhibitory reaction mixture. Inhibition of factor VIIa/tissue factor was reversible; both tissue factor and factor VIIa activity could be recovered from a dissociated, inhibited factor VIIa/tissue factor complex. EPI appeared to bind to a factor VIIa/tissue factor complex formed in the presence of factor Xa but not to a factor VIIa/tissue factor complex formed in the absence of factor Xa.


1996 ◽  
Vol 84 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Helle F. Rønning ◽  
Unni C. Risøen ◽  
Lars Örning ◽  
Knut Sletten ◽  
Kjell S. Sakariassen

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3798-3798
Author(s):  
Lilley Leong ◽  
Irina N. Chernysh ◽  
Yifan Xu ◽  
Cornell Mallari ◽  
Billy Wong ◽  
...  

Abstract Patients with severe factor VIII (FVIII) deficiency (hemophilia A [HemA]) develop neutralizing antibodies (inhibitors) against FVIII in up to ~30% of cases. For HemA patients with inhibitors, activated recombinant factor VII (rFVIIa) is a treatment option. High levels of rFVIIa are required for treating HemA patients with inhibitors to induce direct activation of factor X on the surface of activated platelets via a tissue factor (TF)-independent mechanism (Hoffman M, Monroe DM. Thromb Res. 2010;125(suppl 1):S16-S18). To assess how rFVIIa-mediated clot formation in HemA patients with inhibitors may differ from unaffected individuals, we compared the effect of rFVIIa on HemA versus control (or HemA supplemented with 100% FVIII) clot formation in human and/or mouse systems. By TF-induced thrombin generation assay, increasing rFVIIa from 5 nM to 100 nM did not appreciably alter the kinetics or extent of thrombin generation compared with the same human HemA plasma containing 100% FVIII. Confocal microscopy of human HemA plasma clots generated with 75 nM rFVIIa and TF showed few branching fibrin fibers and an open fibrin meshwork. In contrast, TF-induced coagulation of the same HemA plasma containing 100% FVIII formed fibrin clots with numerous branches, interconnecting to form a dense meshwork. To confirm that these findings reflect rFVIIa-mediated clot formation in vivo, we assessed the intrinsic coagulation of mouse HemA whole blood collected without anticoagulant and spiked with rFVIIa. Intrinsic coagulation with rFVIIa was assessed by T2 magnetic resonance (T2MR), a technique capable of monitoring the separation of whole blood into serum, loose-clot, and tight-clot compartments during coagulation (Skewis et al. Clin Chem. 2014;60:1174-1182; Cines et al. Blood. 2014;123:1596-1603). By T2MR, rFVIIa induced the separation of HemA whole blood into the serum and clot compartments, indicating that the reduced fibrin generation with rFVIIa did not interfere with whole blood coagulation. Furthermore, saphenous vein puncture of HemA mice treated with rFVIIa showed a dose-dependent decrease in clot times. Scanning electron microscopy of the clots extracted from these HemA mice indicated markedly different composition than clots extracted from wild-type mice. In wild-type clots, fibrin and polyhedral erythrocytes formed a large proportion of the total structures. In contrast, clots from rFVIIa-treated HemA mice consisted primarily of platelets and erythrocytes with forms intermediate between discoid and polyhedral but, surprisingly, low fibrin content. Taken together, these data suggest that rFVIIa-mediated clot formation may require greater activated platelet involvement, which would be consistent with the TF-independent mechanism of action proposed for rFVIIa in HemA. Finally, the compositional difference between clots from wild-type versus HemA mice dosed with rFVIIa suggest that evaluating HemA therapies for their ability to form more physiologic clots could be an approach to improve treatment options for patients with HemA. Disclosures Leong: Bayer: Employment. Xu:Bayer: Employment. Mallari:Bayer: Employment. Wong:Bayer: Employment. Sim:Bayer: Employment. Cuker:Stago: Consultancy; Genzyme: Consultancy; Amgen: Consultancy; Biogen-Idec: Consultancy, Research Funding; T2 Biosystems: Research Funding. Marturano:T2 Biosystems: Employment. Lowery:T2 Biosystems: Employment. Kauser:Bayer: Employment. Weisel:Bayer: Research Funding.


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3738-3748 ◽  
Author(s):  
LV Rao ◽  
T Williams ◽  
SI Rapaport

Experiments were performed to evaluate activation of factor VII bound to relipidated tissue factor (TF) in suspension and to TF constitutively expressed on the surface of an ovarian carcinoma cell line (OC-2008). Activation was assessed by measuring cleavage of 125I- factor VII and by the ability of unlabeled factor VII to catalyze activation of a variant factor IX molecule that, after activation, cannot back-activate factor VII. Factor Xa was found to effectively activate factor VII bound to TF relipidated in either acidic or neutral phospholipid vesicles. Autoactivation of factor VII bound to TF in suspension was dependent on the preparation of TF apoprotein used and the technique of its relipidation. This highlights the need for caution in extrapolating data from TF in suspension to the activation of factor VII bound to cell surfaces during hemostasis. A relatively slow activation of factor VII bound to OC-2008 monolayers in the absence of added protease was observed consistently. Antithrombin in the presence or absence of heparin prevented this basal activation, whereas TF pathway inhibitor (TFPI/factor Xa complexes had only a limited inhibitory effect. Adding a substrate concentration of factor X markedly enhanced basal activation of factor VII, but both TFPI/factor Xa and antithrombin/heparin abolished this enhancement. Overall, our data are compatible with the hypothesis that not all factor VII/TF complexes formed at a site of tissue injury are readily activated to factor VIIa (VIIa)/TF complexes during hemostasis. The clinical significance of this is discussed.


Sign in / Sign up

Export Citation Format

Share Document