Action of interleukin-3, G-CSF, and GM-CSF on highly enriched human hematopoietic progenitor cells: synergistic interaction of GM-CSF plus G-CSF

Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 110-114 ◽  
Author(s):  
I McNiece ◽  
R Andrews ◽  
M Stewart ◽  
S Clark ◽  
T Boone ◽  
...  

Abstract Purified preparations of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte CSF (G-CSF), and interleukin 3 (IL-3 or multi-CSF) alone and in combination, have been compared for their stimulatory effects on human granulocyte-macrophage colony forming cells (GM-CFC). In cultures of unseparated normal human bone marrow, the combinations of G-CSF plus IL-3 and GM-CSF plus IL-3 stimulated additive numbers of GM colonies, while GM-CSF plus G-CSF stimulated greater than additive numbers of GM colonies, compared with the sum of the colony formation obtained with each factor alone. Cultures of unseparated bone marrow, harvested from patients four to six days after administration of 5-fluorouracil (5-FU), resulted in additive GM colony formation with GM-CSF plus G-CSF, GM-CSF plus IL-3, and G-CSF plus IL-3. In order to address the possibility of secondary factor involvement in the synergistic interaction of GM-CSF and G-CSF, CD33+/CD34+ colony forming cells were separated from normal and post FU marrow by two color fluorescence activated cell sorting. In cultures of CD33+/CD34+ cells the combination of GM-CSF plus G-CSF stimulated a synergistic increase in GM colonies while GM-CSF plus IL-3 stimulated additive numbers of colonies. These results suggest that GM-CSF, G-CSF, and IL-3 stimulate distinct populations of GM-CFC. Furthermore GM-CSF and G-CSF interact synergistically and this action is a direct effect on progenitor cells not stimulated by GM-CSF or G-CSF alone.

Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 110-114
Author(s):  
I McNiece ◽  
R Andrews ◽  
M Stewart ◽  
S Clark ◽  
T Boone ◽  
...  

Purified preparations of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte CSF (G-CSF), and interleukin 3 (IL-3 or multi-CSF) alone and in combination, have been compared for their stimulatory effects on human granulocyte-macrophage colony forming cells (GM-CFC). In cultures of unseparated normal human bone marrow, the combinations of G-CSF plus IL-3 and GM-CSF plus IL-3 stimulated additive numbers of GM colonies, while GM-CSF plus G-CSF stimulated greater than additive numbers of GM colonies, compared with the sum of the colony formation obtained with each factor alone. Cultures of unseparated bone marrow, harvested from patients four to six days after administration of 5-fluorouracil (5-FU), resulted in additive GM colony formation with GM-CSF plus G-CSF, GM-CSF plus IL-3, and G-CSF plus IL-3. In order to address the possibility of secondary factor involvement in the synergistic interaction of GM-CSF and G-CSF, CD33+/CD34+ colony forming cells were separated from normal and post FU marrow by two color fluorescence activated cell sorting. In cultures of CD33+/CD34+ cells the combination of GM-CSF plus G-CSF stimulated a synergistic increase in GM colonies while GM-CSF plus IL-3 stimulated additive numbers of colonies. These results suggest that GM-CSF, G-CSF, and IL-3 stimulate distinct populations of GM-CFC. Furthermore GM-CSF and G-CSF interact synergistically and this action is a direct effect on progenitor cells not stimulated by GM-CSF or G-CSF alone.


Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2339-2346 ◽  
Author(s):  
E Bruno ◽  
RJ Cooper ◽  
RA Briddell ◽  
R Hoffman

Abstract The effect of several recombinant cytokines, including interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL- 6, and IL-1 alpha, on megakaryocyte (MK) colony formation by a normal human bone marrow subpopulation (CD34+ DR+), enriched for the MK colony- forming unit (CFU-MK), was studied using a serum-depleted, fibrin clot culture system. IL-3 and GM-CSF, but not IL-6 or IL-1 alpha, stimulated MK colony formation by CD34+ DR+ cells. However, the addition of IL-1 alpha to CD34+ DR+ cultures containing IL-6 resulted in the appearance of CFU-MK-derived colonies, suggesting that IL-6 requires the presence of IL-1 alpha to exhibit its MK colony-stimulating activity (MK-CSA). Addition of neutralizing antibodies to IL-3 and GM-CSF, but not to IL-6 and IL-1 alpha, specifically inhibited the MK-CSA of IL-3 and GM-CSF, respectively. The addition of either anti-IL-6, anti-IL-1 alpha, or anti-IL-3 antisera to cultures containing both IL-6 and IL-1 alpha totally abolished the MK-CSA of the IL-6/IL-1 alpha combination. However, neither anti-IL-3 nor anti-GM-CSF antisera could totally neutralize the additive effect of the combination of IL-3 and GM-CSF on MK colony formation, indicating that these two cytokines act by affecting distinct effector pathways. These results suggest that while IL-3 and GM-CSF can directly affect CFU-MK-derived colony formation, IL- 1 alpha and IL-6 act in concert to promote de novo elaboration of IL-3 and thereby promote CFU-MK proliferative capacity.


Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1193-1200 ◽  
Author(s):  
W Brugger ◽  
K Bross ◽  
J Frisch ◽  
P Dern ◽  
B Weber ◽  
...  

Abstract We report on the requirements that have to be met to combine a standard- dose chemotherapy regimen with broad antitumor activity with the mobilization of peripheral blood hematopoietic progenitor cells. Thirty- two cancer patients were given a 1-day course of chemotherapy consisting of etoposide (VP16), ifosfamide, and cisplatin (VIP; n = 46 cycles), followed by the combined sequential administration of recombinant human interleukin-3 (rhIL-3) and recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF). Control patients received GM-CSF alone or were treated without cytokines. Maximum numbers of peripheral blood progenitor cells (PBPC) were recruited on day 13 to 17 after chemotherapy, with a median of 418 CD34+ cells/microL blood (range, 106 to 1,841) in IL-3/GM-CSF-treated patients, 426 CD34+/microL (range, 191 to 1,380) in GM-CSF-treated patients, and 46 CD34+/microL (range, 15 to 148) in patients treated without cytokines. In parallel, there was an increase in myeloid (10,490 colony-forming unit-granulocyte-macrophage [CFU-GM]/mL blood; range, 1,000 to 23,400), as well as erythroid (10,660 burst-forming unit-erythroid [BFU-E]/mL blood; range, 3,870 to 24,300) and multipotential (840 CFU-granulocyte, erythrocyte, monocyte, megakaryocyte [GEMM]/mL blood; range, 160 to 2,070) progenitor cells in IL-3 plus GM-CSF-treated patients. In GM-CSF-treated patients, significantly less precursor cells of all lineages were mobilized, particularly multipotential progenitors (400 CFU-GEMM/mL blood; range, 200 to 2,150). Only small numbers of CD34+ cells and clonogenic progenitor cells could be recruited in intensively pretreated patients. Our data document that after standard-dose chemotherapy-induced bone marrow hypoplasia, IL-3 plus GM-CSF can be used to recruit PBPC, which might shorten the hematopoietic recovery after high-dose chemotherapy in chemosensitive lymphomas or solid tumors.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3829-3840 ◽  
Author(s):  
Xiaowu Zhang ◽  
Ruibao Ren

Abstract The bcr-abl oncogene plays a critical role in causing chronic myelogenous leukemia (CML). Effective laboratory animal models of CML are needed to study the molecular mechanisms by which thebcr-abl oncogene acts in the disease progression of CML. We used a murine stem cell retroviral vector (MSCV) to transduce thebcr-abl/p210 oncogene into mouse bone marrow cells and found that expression of Bcr-Abl/p210 induced a myeloproliferative disorder that resembled the chronic phase of human CML in 100% of bone marrow transplanted mice in about 3 weeks. This CML-like disease was readily transplanted to secondary recipient mice. Multiple clones of infected cells were expanded in the primary recipients, but the leukemia was primarily monoclonal in the secondary recipient mice. Mutation analysis demonstrated that the protein tyrosine kinase activity of Bcr-Abl/p210 was essential for its leukemogenic potential in vivo. Interestingly, we found that the leukemic cells expressed excess interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the diseased mice. These studies demonstrate that expression of Bcr-Abl can induce a CML-like leukemia in mice much more efficiently and reproducibly than in previously reported mouse CML models, probably due to efficient expression in the correct target cell(s). Our first use of this model for analysis of the molecular mechanisms involved in CML raises the possibility that excess expression of hematopoietic growth factors such as IL-3 and GM-CSF may contribute to the clinical phenotype of CML.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3829-3840 ◽  
Author(s):  
Xiaowu Zhang ◽  
Ruibao Ren

The bcr-abl oncogene plays a critical role in causing chronic myelogenous leukemia (CML). Effective laboratory animal models of CML are needed to study the molecular mechanisms by which thebcr-abl oncogene acts in the disease progression of CML. We used a murine stem cell retroviral vector (MSCV) to transduce thebcr-abl/p210 oncogene into mouse bone marrow cells and found that expression of Bcr-Abl/p210 induced a myeloproliferative disorder that resembled the chronic phase of human CML in 100% of bone marrow transplanted mice in about 3 weeks. This CML-like disease was readily transplanted to secondary recipient mice. Multiple clones of infected cells were expanded in the primary recipients, but the leukemia was primarily monoclonal in the secondary recipient mice. Mutation analysis demonstrated that the protein tyrosine kinase activity of Bcr-Abl/p210 was essential for its leukemogenic potential in vivo. Interestingly, we found that the leukemic cells expressed excess interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the diseased mice. These studies demonstrate that expression of Bcr-Abl can induce a CML-like leukemia in mice much more efficiently and reproducibly than in previously reported mouse CML models, probably due to efficient expression in the correct target cell(s). Our first use of this model for analysis of the molecular mechanisms involved in CML raises the possibility that excess expression of hematopoietic growth factors such as IL-3 and GM-CSF may contribute to the clinical phenotype of CML.


1987 ◽  
Vol 166 (6) ◽  
pp. 1851-1860 ◽  
Author(s):  
D Caracciolo ◽  
N Shirsat ◽  
G G Wong ◽  
B Lange ◽  
S Clark ◽  
...  

Human macrophage colony-stimulating factor (M-CSF or CSF-1), either in purified or in recombinant form, is able to generate macrophagic colonies in a murine bone marrow colony assay, but only stimulates small macrophagic colonies of 40-50 cells in a human bone marrow colony assay. We report here that recombinant human granulocytic/macrophage colony stimulating factor (rhGM-CSF) at concentrations in the range of picograms enhances the responsiveness of bone marrow progenitors to M-CSF activity, resulting in an increased number of macrophagic colonies of up to 300 cells. Polyclonal antiserum against M-CSF did not alter colony formation of bone marrow progenitors incubated with GM-CSF at optimal concentration (1-10 ng/ml) for these in vitro assays. Thus, GM-CSF at higher concentrations (nanogram range) can by itself, elicit macrophagic colonies, and at lower concentrations (picogram range) acts to enhance the responsiveness of these progenitors to M-CSF.


Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1193-1200 ◽  
Author(s):  
W Brugger ◽  
K Bross ◽  
J Frisch ◽  
P Dern ◽  
B Weber ◽  
...  

We report on the requirements that have to be met to combine a standard- dose chemotherapy regimen with broad antitumor activity with the mobilization of peripheral blood hematopoietic progenitor cells. Thirty- two cancer patients were given a 1-day course of chemotherapy consisting of etoposide (VP16), ifosfamide, and cisplatin (VIP; n = 46 cycles), followed by the combined sequential administration of recombinant human interleukin-3 (rhIL-3) and recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF). Control patients received GM-CSF alone or were treated without cytokines. Maximum numbers of peripheral blood progenitor cells (PBPC) were recruited on day 13 to 17 after chemotherapy, with a median of 418 CD34+ cells/microL blood (range, 106 to 1,841) in IL-3/GM-CSF-treated patients, 426 CD34+/microL (range, 191 to 1,380) in GM-CSF-treated patients, and 46 CD34+/microL (range, 15 to 148) in patients treated without cytokines. In parallel, there was an increase in myeloid (10,490 colony-forming unit-granulocyte-macrophage [CFU-GM]/mL blood; range, 1,000 to 23,400), as well as erythroid (10,660 burst-forming unit-erythroid [BFU-E]/mL blood; range, 3,870 to 24,300) and multipotential (840 CFU-granulocyte, erythrocyte, monocyte, megakaryocyte [GEMM]/mL blood; range, 160 to 2,070) progenitor cells in IL-3 plus GM-CSF-treated patients. In GM-CSF-treated patients, significantly less precursor cells of all lineages were mobilized, particularly multipotential progenitors (400 CFU-GEMM/mL blood; range, 200 to 2,150). Only small numbers of CD34+ cells and clonogenic progenitor cells could be recruited in intensively pretreated patients. Our data document that after standard-dose chemotherapy-induced bone marrow hypoplasia, IL-3 plus GM-CSF can be used to recruit PBPC, which might shorten the hematopoietic recovery after high-dose chemotherapy in chemosensitive lymphomas or solid tumors.


Blood ◽  
1990 ◽  
Vol 76 (3) ◽  
pp. 523-532 ◽  
Author(s):  
WP Hammond ◽  
TC Boone ◽  
RE Donahue ◽  
LM Souza ◽  
DC Dale

Cyclic hematopoiesis in gray collie dogs is a stem cell disease in which abnormal regulation of cell production in the bone marrow causes cyclic fluctuations of blood cell counts. In vitro studies demonstrated that recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and granulocyte colony stimulating factor (G-CSF) all stimulated increases in colony formation by canine bone marrow progenitor cells. Based on these results, gray collie dogs were then treated with recombinant human (rh) GM-CSF, IL-3, or G-CSF subcutaneously to test the hypothesis that pharmacologic doses of one of these hematopoietic growth factors could alter cyclic production of cells. When recombinant canine G-CSF became available, it was tested over a range of doses. In vivo rhIL-3 had no effect on the recurrent neutropenia but was associated with eosinophilia, rhGM-CSF caused neutrophilia and eosinophilia but cycling of hematopoiesis persisted. However, rhG-CSF caused neutrophilia, prevented the recurrent neutropenia and, in the two animals not developing antibodies to rhG- CSF, obliterated periodic fluctuation of monocyte, eosinophil, reticulocyte, and platelet counts. Recombinant canine G-CSF increased the nadir neutrophil counts and amplitude of fluctuations at low doses (1 micrograms/kg/d) and eliminated all cycling of cell counts at high doses (5 and 10 micrograms/kg/d). These data suggest significant differences in the actions of these growth factors and imply a critical role for G-CSF in the homeostatic regulation of hematopoiesis.


Blood ◽  
1995 ◽  
Vol 85 (1) ◽  
pp. 275-282 ◽  
Author(s):  
TA Lane ◽  
P Law ◽  
M Maruyama ◽  
D Young ◽  
J Burgess ◽  
...  

To explore the use of stem/progenitor cells from peripheral blood (PB) for allogeneic transplantation, we have studied the mobilization of progenitor cells in normal donors by growth factors. Normal subjects were administered either granulocyte-macrophage colony-stimulating factor (GM-CSF) at 10 micrograms/kg/d, or G-CSF at 10 micrograms/kg/d, or a combination of G- and GM-CSF at 5 micrograms/kg/d each, administered subcutaneously for 4 days, followed by leukapheresis on day 5. Mononuclear cells expressing CD34 (CD34+ cells) were selectively enriched by affinity labeling using Dynal paramagnetic microspheres (Baxter Isolex; Baxter Healthcare Corp, Santa Ana, CA). The baseline CD34+ cells in peripheral blood before mobilization was 0.07% +/- 0.05% (1.6 +/- 0.7/microL; n = 18). On the fifth day after stimulation (24 hours after the fourth dose), the CD34+ cells were 0.99% +/- 0.40% (61 +/- 14/microL) for the 8 subjects treated with G-CSF, 0.25% +/- 0.25% (3 +/- 3/microL, both P < .01 v G-CSF) for the 5 subjects administered GM-CSF, and for the 5 subjects treated with G- and GM-CSF, 0.65% +/- 0.28% (41 +/- 18/microL, P < .5 v GM-CSF). Parallel to this increase in CD34+ cells, clonogenic assays showed a corresponding increase in CFU- GM and BFU-E. The total number of CD34+ cells collected from the G-CSF group during a 3-hour apheresis was 119 +/- 65 x 10(6) and was not significantly different from that collected from the group treated with G- and GM-CSF (101 +/- 35 x 10(6) cells), but both were greater than that from the group treated with GM-CSF (12.6 +/- 6.1 x 10(6); P < .01 for both comparisons). Analysis of the CD34+ subsets showed that a significantly higher percentage of cells with the CD34+/CD38- phenotype is found after mobilization with G- and GM-CSF. In the G-CSF group, immunomagnetic selection of CD34+ cells permitted the enrichment of the CD34+ cells in the apheresis product to 81% +/- 11%, with a 48% +/- 12% yield and to a purity of 77% +/- 21% with a 51% +/- 15% recovery in the G- and GM-CSF group. T cells were depleted from a mean of 4.5 +/- 2.0 x 10(9) to 4.3 +/- 5.2 x 10(6) after selection, representing 99.9% depletion. We conclude that it is feasible to collect sufficient numbers of PB progenitor cells from normal donors with one to two leukapheresis procedures for allogeneic transplantation.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document