scholarly journals Monoclonal antibodies bound to subunits of the integrin GPIIb-IIIa are internalized and interfere with filopodia formation and platelet aggregation

Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1564-1571
Author(s):  
WM Isenberg ◽  
DF Bainton ◽  
PJ Newman

The monoclonal antibodies Tab and AP3 are directed, respectively, against GPIIb and GPIIIa, the subunits of the platelet fibrinogen receptor. When added together to platelets, these antibodies prevent adenosine diphosphate (ADP)-induced platelet aggregation, despite normal fibrinogen binding (Newman et al, Blood 69:668, 1987). To explore the cellular requirements of aggregation after fibrinogen binding, we used several techniques to study platelets treated with Tab and AP3, then stimulated with ADP. We used scanning and transmission electron microscopy to evaluate platelet morphology, immunolabel- surface replication to determine whether individual GPIIb-IIIa complexes clustered, immunocytochemistry on frozen thin sections to study the subcellular distribution of the integrin GPIIb-IIIa and fibrinogen, and biochemical methods to assess the activation of the platelet cytoskeleton. We found that the treated cells had short, blunted projections instead of normal filopodia. Other morphologic abnormalities, apparent in thin section, were aberrantly placed alpha- granules and microtubules, and a prominent, worm-like, fibrinogen- filled surface-connected canalicular system. Biochemical analysis suggested that such platelets undergo massive actomyosin-controlled membrane flow, which serves to sequester GPIIb-IIIa and makes the platelets refractory to aggregation. We conclude that aggregation requires the formation of long, slender filopodia, probably directed by cytoskeletal rearrangements after activation, and that the transmembrane GPIIb-IIIa complex may play a role in signaling these events.

Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1564-1571 ◽  
Author(s):  
WM Isenberg ◽  
DF Bainton ◽  
PJ Newman

Abstract The monoclonal antibodies Tab and AP3 are directed, respectively, against GPIIb and GPIIIa, the subunits of the platelet fibrinogen receptor. When added together to platelets, these antibodies prevent adenosine diphosphate (ADP)-induced platelet aggregation, despite normal fibrinogen binding (Newman et al, Blood 69:668, 1987). To explore the cellular requirements of aggregation after fibrinogen binding, we used several techniques to study platelets treated with Tab and AP3, then stimulated with ADP. We used scanning and transmission electron microscopy to evaluate platelet morphology, immunolabel- surface replication to determine whether individual GPIIb-IIIa complexes clustered, immunocytochemistry on frozen thin sections to study the subcellular distribution of the integrin GPIIb-IIIa and fibrinogen, and biochemical methods to assess the activation of the platelet cytoskeleton. We found that the treated cells had short, blunted projections instead of normal filopodia. Other morphologic abnormalities, apparent in thin section, were aberrantly placed alpha- granules and microtubules, and a prominent, worm-like, fibrinogen- filled surface-connected canalicular system. Biochemical analysis suggested that such platelets undergo massive actomyosin-controlled membrane flow, which serves to sequester GPIIb-IIIa and makes the platelets refractory to aggregation. We conclude that aggregation requires the formation of long, slender filopodia, probably directed by cytoskeletal rearrangements after activation, and that the transmembrane GPIIb-IIIa complex may play a role in signaling these events.


Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 2017-2023 ◽  
Author(s):  
MH Ginsberg ◽  
AL Frelinger ◽  
SC Lam ◽  
J Forsyth ◽  
R McMillan ◽  
...  

Abstract Normal primary platelet aggregation requires agonist-mediated activation of membrane GPIIb-IIIa, binding of fibrinogen to GPIIb-IIIa, and cellular events after ligand binding. PAC1 monoclonal antibody distinguishes between resting and activated states of GPIIb-IIIa, and other antibodies preferentially recognize GPIIb (PMI-1) or IIIa (anti- LIBS1) after the binding of fibrinogen or fibrinogen-mimetic peptides, such as GRGDSP. Using these antibodies and platelet flow cytometry, we studied two distinct persistent platelet aggregation abnormalities. Platelets from a thrombasthenic variant, which contained near-normal amounts of GPIIb-IIIa, failed to aggregate or bind PAC1 in response to agonists. In addition, GRGDSP, which binds to normal GPIIb-IIIa without prior cell activation, failed to increase the binding of PMI-1 or anti- LIBS1 to the thrombasthenic platelets, suggesting a primary defect in ligand binding. Chromatography of detergent-solubilized platelets on a KYGRGDS affinity column confirmed that the patient's GPIIb-IIIa lacked the fibrinogen binding site. In another patient with myelofibrosis and defective aggregation, PAC1 failed to bind to adenosine diphosphate- stimulated platelets, but did bind when protein kinase C was directly activated with phorbol myristate acetate. Furthermore, the binding of PMI-1 and anti-LIBS1 increased in response to GRGDSP, confirming a defect in agonist-mediated fibrinogen receptor activation rather than in fibrinogen binding or events distal to binding. These studies indicate that this immunochemical approach is useful in classification of clinical abnormalities of platelet aggregation as defects in either (a) fibrinogen receptor activation, (b) fibrinogen binding, or (c) postoccupancy events.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 668-676
Author(s):  
PJ Newman ◽  
RP McEver ◽  
MP Doers ◽  
TJ Kunicki

We have used two murine monoclonal antibodies, each directed against one component of the human platelet membrane glycoprotein (GP) IIb-IIIa complex, to examine further the molecular requirements for fibrinogen binding to the platelet surface and subsequent platelet-platelet cohesion (aggregation). Although neither AP3, which is directed against GPIIIa, nor Tab, which is specific for GPIIb, were individually able to inhibit adenosine diphosphate (ADP)-induced fibrinogen binding, platelet aggregation, or secretion, the combination of AP3 and Tab completely abolished platelet aggregation and the release reaction. Unexpectedly, this synergistic inhibition of platelet-platelet cohesion occurred in the presence of apparently normal fibrinogen binding. Both the number of fibrinogen molecules bound and the dissociation constant for fibrinogen binding remained essentially unchanged in the presence of these two antibodies. Inhibition of aggregation was dependent upon the divalency of both AP3 and Tab because substitution of Fab fragments of either antibody for the intact IgG resulted in a complete restoration of both aggregation and secretion. In contrast to ADP induction, thrombin-activated platelets neither aggregated nor bound fibrinogen in the presence of AP3 plus Tab but were fully capable of secretion, which illustrated the multiple mechanisms by which the platelet surface can respond to different agonists. These data demonstrate that fibrinogen binding to the platelet surface alone is not sufficient to support platelet-platelet cohesion and that an additional post-fibrinogen-binding event(s) that is inhibitable by these two monoclonal antibodies may be required.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 59-63 ◽  
Author(s):  
EI Peerschke ◽  
BS Coller

We recently described a monoclonal antibody, 10E5 , that completely blocks adenosine diphosphate (ADP) induced fibrinogen binding to platelets and aggregation induced by ADP, epinephrine, and thrombin. Multiple lines of evidence indicate that 10E5 binds to platelet membrane glycoproteins IIb and/or IIIa. Because it has been reported that platelets treated with chymotrypsin aggregate when fibrinogen is added, we tested the effect of 10E5 antibody on chymotrypsin-induced fibrinogen binding and platelet aggregation. Aspirin-treated human platelets were washed in modified Tyrode's buffer (pH 7.5), incubated for 5 minutes at 22 degrees C with 300 micrograms/mL chymotrypsin, and washed again. The amount of 10E5 antibody bound to these platelets (37,232 +/- 2,928 molecules/platelet; mean +/- SEM, N=9) was similar to that bound to unstimulated control platelets (36,910 +/- 2,669) and did not differ significantly from the amount of antibody bound to ADP- treated platelets (P less than .01, N = 5). The amount of 10E5 bound to chymotrypsin-treated platelets correlated directly with the amount of fibrinogen bound to separate aliquots of the same platelet samples (r = .876, P less than .001). The 10E5 antibody caused virtually complete inhibition of both the binding of fibrinogen to chymotrypsin-treated platelets and the aggregation induced by exogenous fibrinogen. Immunoprecipitation studies of 125I-labeled chymotrypsin-treated platelets revealed that the 10E5 antibody bound proteins with molecular weights characteristic of glycoproteins IIb and IIIa. These data suggest that the fibrinogen receptor on chymotrypsin-treated platelets is identical to that on ADP-treated platelets and that this receptor is either near to, or on, the glycoprotein IIb/IIIa complex.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 59-63 ◽  
Author(s):  
EI Peerschke ◽  
BS Coller

Abstract We recently described a monoclonal antibody, 10E5 , that completely blocks adenosine diphosphate (ADP) induced fibrinogen binding to platelets and aggregation induced by ADP, epinephrine, and thrombin. Multiple lines of evidence indicate that 10E5 binds to platelet membrane glycoproteins IIb and/or IIIa. Because it has been reported that platelets treated with chymotrypsin aggregate when fibrinogen is added, we tested the effect of 10E5 antibody on chymotrypsin-induced fibrinogen binding and platelet aggregation. Aspirin-treated human platelets were washed in modified Tyrode's buffer (pH 7.5), incubated for 5 minutes at 22 degrees C with 300 micrograms/mL chymotrypsin, and washed again. The amount of 10E5 antibody bound to these platelets (37,232 +/- 2,928 molecules/platelet; mean +/- SEM, N=9) was similar to that bound to unstimulated control platelets (36,910 +/- 2,669) and did not differ significantly from the amount of antibody bound to ADP- treated platelets (P less than .01, N = 5). The amount of 10E5 bound to chymotrypsin-treated platelets correlated directly with the amount of fibrinogen bound to separate aliquots of the same platelet samples (r = .876, P less than .001). The 10E5 antibody caused virtually complete inhibition of both the binding of fibrinogen to chymotrypsin-treated platelets and the aggregation induced by exogenous fibrinogen. Immunoprecipitation studies of 125I-labeled chymotrypsin-treated platelets revealed that the 10E5 antibody bound proteins with molecular weights characteristic of glycoproteins IIb and IIIa. These data suggest that the fibrinogen receptor on chymotrypsin-treated platelets is identical to that on ADP-treated platelets and that this receptor is either near to, or on, the glycoprotein IIb/IIIa complex.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 668-676 ◽  
Author(s):  
PJ Newman ◽  
RP McEver ◽  
MP Doers ◽  
TJ Kunicki

Abstract We have used two murine monoclonal antibodies, each directed against one component of the human platelet membrane glycoprotein (GP) IIb-IIIa complex, to examine further the molecular requirements for fibrinogen binding to the platelet surface and subsequent platelet-platelet cohesion (aggregation). Although neither AP3, which is directed against GPIIIa, nor Tab, which is specific for GPIIb, were individually able to inhibit adenosine diphosphate (ADP)-induced fibrinogen binding, platelet aggregation, or secretion, the combination of AP3 and Tab completely abolished platelet aggregation and the release reaction. Unexpectedly, this synergistic inhibition of platelet-platelet cohesion occurred in the presence of apparently normal fibrinogen binding. Both the number of fibrinogen molecules bound and the dissociation constant for fibrinogen binding remained essentially unchanged in the presence of these two antibodies. Inhibition of aggregation was dependent upon the divalency of both AP3 and Tab because substitution of Fab fragments of either antibody for the intact IgG resulted in a complete restoration of both aggregation and secretion. In contrast to ADP induction, thrombin-activated platelets neither aggregated nor bound fibrinogen in the presence of AP3 plus Tab but were fully capable of secretion, which illustrated the multiple mechanisms by which the platelet surface can respond to different agonists. These data demonstrate that fibrinogen binding to the platelet surface alone is not sufficient to support platelet-platelet cohesion and that an additional post-fibrinogen-binding event(s) that is inhibitable by these two monoclonal antibodies may be required.


Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 2017-2023 ◽  
Author(s):  
MH Ginsberg ◽  
AL Frelinger ◽  
SC Lam ◽  
J Forsyth ◽  
R McMillan ◽  
...  

Normal primary platelet aggregation requires agonist-mediated activation of membrane GPIIb-IIIa, binding of fibrinogen to GPIIb-IIIa, and cellular events after ligand binding. PAC1 monoclonal antibody distinguishes between resting and activated states of GPIIb-IIIa, and other antibodies preferentially recognize GPIIb (PMI-1) or IIIa (anti- LIBS1) after the binding of fibrinogen or fibrinogen-mimetic peptides, such as GRGDSP. Using these antibodies and platelet flow cytometry, we studied two distinct persistent platelet aggregation abnormalities. Platelets from a thrombasthenic variant, which contained near-normal amounts of GPIIb-IIIa, failed to aggregate or bind PAC1 in response to agonists. In addition, GRGDSP, which binds to normal GPIIb-IIIa without prior cell activation, failed to increase the binding of PMI-1 or anti- LIBS1 to the thrombasthenic platelets, suggesting a primary defect in ligand binding. Chromatography of detergent-solubilized platelets on a KYGRGDS affinity column confirmed that the patient's GPIIb-IIIa lacked the fibrinogen binding site. In another patient with myelofibrosis and defective aggregation, PAC1 failed to bind to adenosine diphosphate- stimulated platelets, but did bind when protein kinase C was directly activated with phorbol myristate acetate. Furthermore, the binding of PMI-1 and anti-LIBS1 increased in response to GRGDSP, confirming a defect in agonist-mediated fibrinogen receptor activation rather than in fibrinogen binding or events distal to binding. These studies indicate that this immunochemical approach is useful in classification of clinical abnormalities of platelet aggregation as defects in either (a) fibrinogen receptor activation, (b) fibrinogen binding, or (c) postoccupancy events.


1998 ◽  
Vol 201 (4) ◽  
pp. 599-608 ◽  
Author(s):  
D J Hill ◽  
A F Rowley

The involvement of a putative integrin-like fibrinogen receptor in the aggregatory and phagocytic behaviour of thrombocytes (platelet equivalents of fish) from the rainbow trout Oncorhynchus mykiss was studied. Aggregation of trout thrombocytes was induced by the thromboxane mimetic U-46619 in the presence of trout fibrinogen. Thrombocyte aggregation was inhibited by the tetrapeptide RGDS, but not by RGES or fibrinogen binding inhibitor peptide (HHLGGAKQAGDV). A range of monoclonal antibodies against the human platelet integrin alphaIIbbeta3 (anti-CD41a, anti-beta3 and LK7r) showed no reactivity with trout thrombocytes. Subsequently, a panel of monoclonal antibodies was raised against thrombocyte membrane preparations in an attempt to obtain an antibody against the putative integrin fibrinogen receptor. Of these monoclonal antibodies, four were found to inhibit thrombocyte aggregation, namely 12G2, 30D8, 32F8 and 32H10. The antibody 32H10 was shown significantly to inhibit the attachment of thrombocytes to immobilised trout fibrinogen, suggesting that it and the other antibodies recognise the putative fibrinogen receptor on trout thrombocytes. FITC-labelled Bacillus cereus were employed as test particles to prove that thrombocytes internalise bacteria via an active process and not simply by passive sequestration into the open canalicular system. Preincubation of bacteria with trout fibrinogen resulted in a significant increase in the number of thrombocytes exhibiting phagocytosis. This enhancement of phagocytosis by preincubation of B. cereus with trout fibrinogen could be inhibited by the tetrapeptide RGDS, but not by RGES, hence implicating the putative fibrinogen receptor in the internalisation of microorganisms. The relevance of these findings to the possible existence of an integrin-like receptor on trout thrombocytes is discussed.


1994 ◽  
Vol 5 (1) ◽  
pp. 36-46
Author(s):  
M P Gawaz ◽  
G Dobos ◽  
M Späth ◽  
P Schollmeyer ◽  
H J Gurland ◽  
...  

Impaired platelet function and a bleeding tendency are well-recognized complications of chronic renal failure. Because the fibrinogen receptor GPIIb-IIIa plays a central role in platelet aggregation and adhesion to the subendothelium, it was reasoned that a defect in this receptor may underlie the impaired platelet function in uremia. To test this hypothesis, the function of this receptor in the platelets of 11 uremic patients was studied. Aggregation studies were performed with flow cytometric techniques with anti-GPIIb-IIIa conformation-specific monoclonal antibodies (mAb) (anti-LIBS1 and anti-PMI-1). Antifibrinogen and antithrombospondin mAb were used to characterize fibrinogen binding to GPIIb-IIIa and the release of alpha-granules, respectively. Platelets from patients with chronic renal failure showed significantly decreased binding of conformation-dependent anti-LIBS1 mAb after ADP, phorbol myristate acetate, or RGD-peptide stimulation compared with normal controls, suggesting a defect related to the ability of the fibrinogen receptor to undergo a conformational change. Moreover, antifibrinogen and antithrombospondin binding to activated platelets were reduced in uremic patients, implying impairment of both ligand-binding and alpha-granule release. Hemodialysis partially restored GPIIb-IIIa function, which may account for the observed effects of this therapy in restoring platelet aggregation. These findings indicate that platelets of patients with chronic renal failure reveal an aggregation defect at least partially due to an intrinsic GPIIb-IIIa dysfunction and the presence of a putative uremic toxin that inhibits fibrinogen binding to GPIIb-IIIa.


1991 ◽  
Vol 66 (06) ◽  
pp. 694-699 ◽  
Author(s):  
Marco Cattaneo ◽  
Benjaporn Akkawat ◽  
Anna Lecchi ◽  
Claudio Cimminiello ◽  
Anna M Capitanio ◽  
...  

SummaryPlatelet aggregation and fibrinogen binding were studied in 15 individuals before and 7 days after the oral administration of ticlopidine (250 mg b.i.d.). Ticlopidine significantly inhibited platelet aggregation induced by adenosine diphosphate (ADP), the endoperoxide analogue U46619, collagen or low concentrations of thrombin, but did not inhibit platelet aggregation induced by epinephrine or high concentrations of thrombin. Ticlopidine inhibited 125I-fibrinogen binding induced by ADP, U46619 or thrombin (1 U/ml). The ADP scavengers apyrase or CP/CPK, added in vitro to platelet suspensions obtained before ticlopidine, caused the same pattern of aggregation and 125I-fibrihogen binding inhibition as did ticlopidine. Ticlopidine did not inhibit further platelet aggregation and 125I-fibrinogen binding induced in the presence of ADP scavengers. After ticlopidine administration, thrombin or U46619, but not ADP, increased the binding rate of the anti-GPIIb/IIIa monoclonal antibody 7E3 to platelets. Ticlopidine inhibited clot retraction induced by reptilase plus ADP, but not that induced by thrombin or by reptilase plus epinephrine, and prevented the inhibitory effect of ADP, but not that of epinephrine, on the PGE1-induced increase in platelet cyclic AMP. The number of high- and low-affinity binding sites for 3H-ADP on formalin-fixed platelets and their K d were not modified by ticlopidine. These findings indicate that ticlopidine selectively inhibits platelet responses to ADP.


Sign in / Sign up

Export Citation Format

Share Document