scholarly journals Human burst-forming units-erythroid need direct interaction with stem cell factor for further development

Blood ◽  
1991 ◽  
Vol 78 (10) ◽  
pp. 2493-2497 ◽  
Author(s):  
CH Dai ◽  
SB Krantz ◽  
KM Zsebo

To understand the factors that regulate the early growth and development of immature erythroid progenitor cells, the burst-forming units-erythroid (BFU-E), it is necessary to have both highly purified target cells and a medium free of serum. When highly purified human blood BFU-E were cultured in a serum-free medium adequate for the growth of later erythroid progenitors, BFU-E would not grow even with the addition of recombinant human interleukin-3 (rIL-3), known to be essential for these cells. However, the addition of recombinant human stem cell factor (rSCF), which supports germ cell and pluripotential stem cell growth, stimulated BFU-E to grow equally well in serum-free as in serum-containing medium. Limiting dilution studies showed that rSCF acts directly on the BFU-E that do not require accessory cells for growth. Furthermore, rSCF was necessary for BFU-E development during the initial 7 days of culture, until these cells reached the stage of the late progenitors, the colony-forming units-erythroid (CFU-E). These studies indicate that early erythropoiesis is dependent on the direct action of SCF that not only affects early stem cells but is continually necessary for the further development of committed erythroid progenitor cells until the CFU-E stage of maturation.

Blood ◽  
1991 ◽  
Vol 78 (10) ◽  
pp. 2493-2497 ◽  
Author(s):  
CH Dai ◽  
SB Krantz ◽  
KM Zsebo

Abstract To understand the factors that regulate the early growth and development of immature erythroid progenitor cells, the burst-forming units-erythroid (BFU-E), it is necessary to have both highly purified target cells and a medium free of serum. When highly purified human blood BFU-E were cultured in a serum-free medium adequate for the growth of later erythroid progenitors, BFU-E would not grow even with the addition of recombinant human interleukin-3 (rIL-3), known to be essential for these cells. However, the addition of recombinant human stem cell factor (rSCF), which supports germ cell and pluripotential stem cell growth, stimulated BFU-E to grow equally well in serum-free as in serum-containing medium. Limiting dilution studies showed that rSCF acts directly on the BFU-E that do not require accessory cells for growth. Furthermore, rSCF was necessary for BFU-E development during the initial 7 days of culture, until these cells reached the stage of the late progenitors, the colony-forming units-erythroid (CFU-E). These studies indicate that early erythropoiesis is dependent on the direct action of SCF that not only affects early stem cells but is continually necessary for the further development of committed erythroid progenitor cells until the CFU-E stage of maturation.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3658-3668 ◽  
Author(s):  
Birgit Panzenböck ◽  
Petr Bartunek ◽  
Markus Y. Mapara ◽  
Martin Zenke

Abstract Stem cell factor (SCF) and erythropoietin (Epo) effectively support erythroid cell development in vivo and in vitro. We have studied here an SCF/Epo-dependent erythroid progenitor cell from cord blood that can be efficiently amplified in liquid culture to large cell numbers in the presence of SCF, Epo, insulin-like growth factor-1 (IGF-1), dexamethasone, and estrogen. Additionally, by changing the culture conditions and by administration of Epo plus insulin, such progenitor cells effectively undergo terminal differentiation in culture and thereby faithfully recapitulate erythroid cell differentiation in vitro. This SCF/Epo-dependent erythroid progenitor is also present in CD34+ peripheral blood stem cells and human bone marrow and can be isolated, amplified, and differentiated in vitro under the same conditions. Thus, highly homogenous populations of SCF/Epo-dependent erythroid progenitors can be obtained in large cell numbers that are most suitable for further biochemical and molecular studies. We demonstrate that such cells express the recently identified adapter protein p62dok that is involved in signaling downstream of the c-kit/SCF receptor. Additionally, cells express the cyclin-dependent kinase (CDK) inhibitors p21cip1 and p27kip1 that are highly induced when cells differentiate. Thus, the in vitro system described allows the study of molecules and signaling pathways involved in proliferation or differentiation of human erythroid cells.


Blood ◽  
1995 ◽  
Vol 86 (2) ◽  
pp. 572-580 ◽  
Author(s):  
K Muta ◽  
SB Krantz ◽  
MC Bondurant ◽  
CH Dai

Stem cell factor (SCF), the ligand for the c-kit tyrosine kinase receptor, markedly stimulates the accumulation of erythroid progenitor cells in vitro. We now report that SCF delays erythroid differentiation among the progeny of individual erythroid progenitors while greatly increasing the proliferation of these progeny. These effects appear to be independent of an effect on maintenance of cell viability. Highly purified day-6 erythroid colony-forming cells (ECFC), consisting mainly of colony-forming units-erythroid (CFU-E), were generated from human peripheral blood burst-forming units-erythroid (BFU-E). Addition of SCF to the ECFC in serum-free liquid culture, together with erythropoietin (EP) and insulin-like growth factor 1 (IGF-1), resulted in a marked increase in DNA synthesis, associated with a delayed peak in cellular benzidine positivity and a delayed incorporation of 59Fe into hemoglobin compared with cultures without SCF. In the presence of SCF, the number of ECFC was greatly expanded during this culture period, and total production of benzidine-positive cells plus hemoglobin synthesis were ultimately increased. To determine the effect of SCF on individual ECFC, single-cell cultures were performed in both semisolid and liquid media. These cultures demonstrated that SCF, in the presence of EP and IGF-1, acted on single cells and their descendants to delay erythroid differentiation while substantially stimulating cellular proliferation, without an enhancement of viability of the initial cells. This was also evident when the effect of SCF was determined using clones of ECFC derived from single BFU-E. Our experiments demonstrate that SCF acts on individual day-6 ECFC to retard erythroid differentiation while simultaneously providing enhanced proliferation by a process apparently independent of an effect on cell viability or programmed cell death.


Blood ◽  
1996 ◽  
Vol 88 (5) ◽  
pp. 1594-1607 ◽  
Author(s):  
J Olweus ◽  
LW Terstappen ◽  
PA Thompson ◽  
F Lund-Johansen

The aim of the present study was to determine whether stem cell factor (SCF) and erythropoietin (EPO) act differently on defined subsets of progenitor cells, and if potential differences correlate with the receptor density on each subset. To investigate this possibility directly, we optimized conditions for the identification and purification of homogeneous progenitor cell subpopulations from human bone marrow. Populations containing 40% and 44% colony forming cells (CFCs) with 99% and 95% purity for the granulomonocytic and erythroid lineage, respectively, were sorted on the basis of differential expression of CD34, CD64, and CD71. In addition, a population containing 67% CFCs, of which 29–43% were CFU-MIX, was sorted from CD34hi CD38loCD50+ cells. Purified progenitor cell subsets were compared directly for responsiveness to SCF and EPO using a short-term proliferation assay. Expression of the receptors for SCF and EPO were then examined on each subset using a flow cytometer modified for high- sensitivity fluorescence measurements. The results show that EPO induces extensive proliferation of erythroid progenitor cells, but has no effect on the proliferation or survival of primitive or granulomonocytic progenitors, even when used in combination with other cytokines. The majority of erythroid progenitor cells furthermore stained positively with anti-EPO receptor (EPO-R) monoclonal antibodies, whereas other progenitor cells were negative. SCF alone induced extensive proliferation of erythroid progenitor cells, and had a stronger synergistic effect on primitive than on granulo-monocytic progenitors. In spite of these differences in SCF activity, there were no significant differences in SCF-R expression between the progenitor subsets. These results suggest that the selective action of EPO on erythropoiesis is determined by lineage-restricted receptor expression, whereas there are additional cell-type specific factors that influence progenitor cell responses to SCF.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3658-3668 ◽  
Author(s):  
Birgit Panzenböck ◽  
Petr Bartunek ◽  
Markus Y. Mapara ◽  
Martin Zenke

Stem cell factor (SCF) and erythropoietin (Epo) effectively support erythroid cell development in vivo and in vitro. We have studied here an SCF/Epo-dependent erythroid progenitor cell from cord blood that can be efficiently amplified in liquid culture to large cell numbers in the presence of SCF, Epo, insulin-like growth factor-1 (IGF-1), dexamethasone, and estrogen. Additionally, by changing the culture conditions and by administration of Epo plus insulin, such progenitor cells effectively undergo terminal differentiation in culture and thereby faithfully recapitulate erythroid cell differentiation in vitro. This SCF/Epo-dependent erythroid progenitor is also present in CD34+ peripheral blood stem cells and human bone marrow and can be isolated, amplified, and differentiated in vitro under the same conditions. Thus, highly homogenous populations of SCF/Epo-dependent erythroid progenitors can be obtained in large cell numbers that are most suitable for further biochemical and molecular studies. We demonstrate that such cells express the recently identified adapter protein p62dok that is involved in signaling downstream of the c-kit/SCF receptor. Additionally, cells express the cyclin-dependent kinase (CDK) inhibitors p21cip1 and p27kip1 that are highly induced when cells differentiate. Thus, the in vitro system described allows the study of molecules and signaling pathways involved in proliferation or differentiation of human erythroid cells.


Blood ◽  
1996 ◽  
Vol 88 (5) ◽  
pp. 1594-1607 ◽  
Author(s):  
J Olweus ◽  
LW Terstappen ◽  
PA Thompson ◽  
F Lund-Johansen

Abstract The aim of the present study was to determine whether stem cell factor (SCF) and erythropoietin (EPO) act differently on defined subsets of progenitor cells, and if potential differences correlate with the receptor density on each subset. To investigate this possibility directly, we optimized conditions for the identification and purification of homogeneous progenitor cell subpopulations from human bone marrow. Populations containing 40% and 44% colony forming cells (CFCs) with 99% and 95% purity for the granulomonocytic and erythroid lineage, respectively, were sorted on the basis of differential expression of CD34, CD64, and CD71. In addition, a population containing 67% CFCs, of which 29–43% were CFU-MIX, was sorted from CD34hi CD38loCD50+ cells. Purified progenitor cell subsets were compared directly for responsiveness to SCF and EPO using a short-term proliferation assay. Expression of the receptors for SCF and EPO were then examined on each subset using a flow cytometer modified for high- sensitivity fluorescence measurements. The results show that EPO induces extensive proliferation of erythroid progenitor cells, but has no effect on the proliferation or survival of primitive or granulomonocytic progenitors, even when used in combination with other cytokines. The majority of erythroid progenitor cells furthermore stained positively with anti-EPO receptor (EPO-R) monoclonal antibodies, whereas other progenitor cells were negative. SCF alone induced extensive proliferation of erythroid progenitor cells, and had a stronger synergistic effect on primitive than on granulo-monocytic progenitors. In spite of these differences in SCF activity, there were no significant differences in SCF-R expression between the progenitor subsets. These results suggest that the selective action of EPO on erythropoiesis is determined by lineage-restricted receptor expression, whereas there are additional cell-type specific factors that influence progenitor cell responses to SCF.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1287-1287
Author(s):  
Melissa M. Rhodes ◽  
Prapaporn Kopsombut ◽  
Maurice Bondurant ◽  
James O. Price ◽  
Mark J. Koury

Abstract INTRODUCTION: EPO regulates erythropoiesis by preventing apoptosis at the relatively late developmental stages of CFU-E and proerythroblasts. Cells in these EPO-dependent stages are actively dividing, but after several divisions they enter a G0 state from which they enucleate. In vivo these erythroid progenitor cells associate physically with macrophages in the bone marrow, forming erythroblastic islands. Erythroblastic islands appear to be necessary for proper development of erythroblasts into erythrocytes, but our current knowledge about erythroid progenitor-macrophage interactions in the erythroblastic islands is limited. METHODS: Spleens of mice in the acute erythroblastic phase of Friend virus disease were used to reconstitute erythroblastic islands in a co-culture system that enabled study of interactions between macrophages and developmentally synchronized EPO-dependent erythroid progenitors. Proliferation and differentiation of these erythroid progenitors in macrophage co-cultures was compared to controls in which the same erythroid progenitors were cultured alone. Erythroblasts adherent to macrophages and non-adherent erythroblasts from co-cultures, as well as control erythroblasts cultured without macrophages were collected at 6, 20, 32, and 44 hrs after initial culture for cell counts, cytospin preparations for morphology, flow cytometry analyses for apoptosis (TUNEL), cell cycle phases, and expression of two surface molecules known to be expressed on differentiating erythroblasts, phosphatidylserine (PS) and α4 integrin. Experiments were also done with erythroblasts cultured in macrophage-conditioned media. RESULTS: Splenic erythroblasts cultured alone proliferated 4.6 ± 0.7 fold over 44 h, while erythroblasts co-cultured with splenic macrophages proliferated 14.2 ± 2 fold (n=12). Control erythroblasts had the same proliferation in macrophage-conditioned medium as they did in normal medium. In EPO dose-response experiments, percentages of apoptosis were the same among adherent and non-adherent co-cultured erythroblasts and control erythroblasts. Cytospin preparations revealed no differences in morphology among non-adherent and adherent erythroblasts in co-cultures and control erythroblasts. No differences were found in enucleation percentages, extruded nuclei, or reticulocyte formation at 44 h. Likewise no differences were found in percentages of apoptotic cells, distribution of cell cycle phases, or surface expressions of PS or α4 integrin during the 44 h of differentiation. CONCLUSIONS: Co-culture with macrophages in reconstituted erythroblastic islands dramatically increases the erythroblast proliferation, without affecting differentiation. The increase in proliferation is not due to decreased apoptosis, increased EPO responsiveness, or soluble factors released by the macrophages. Preservation of EPO-dependence during this expansion of erythroblasts mediated by direct interaction with macrophages indicates that erythropoietic regulation by EPO affects a larger population of erythroid progenitor cells in later stages of erythropoiesis and, thereby, accounts for relatively rapid increases or decreases in erythrocyte production following changes in EPO levels in vivo.


Sign in / Sign up

Export Citation Format

Share Document