scholarly journals Molecular basis for Glanzmann's thrombasthenia (GT) in a compound heterozygote with glycoprotein IIb gene: a proposal for the classification of GT based on the biosynthetic pathway of glycoprotein IIb-IIIa complex

Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3212-3218 ◽  
Author(s):  
A Kato ◽  
K Yamamoto ◽  
S Miyazaki ◽  
SM Jung ◽  
M Moroi ◽  
...  

Abstract The genetic basis for Glanzmann's thrombasthenia (GT) was elucidated on a compound heterozygote with glycoprotein (GP)IIb gene: an opal mutation at the end of exon 17 (CGA----TGA) results in only a trace amount of GPIIb mRNA, and a splicing mutation at the acceptor site of exon 26 (CAG----GAG) causes an in-frame, exon skipping process from exon 25 to 27. This aberrant transcript encodes a single-chain polypeptide characterized by a 42-amino acid deletion, which includes the proteolytic cleavage site(s) and a unique, proline-rich region at the location corresponding to the carboxyl-terminal of the normal GPIIb alpha-chain. These characteristics are shared by a previously reported defective GPIIb molecule, which is neither assembled with GPIIIa nor transported to the cellular surface. Despite its normal transcription level, expression of the present defective GPIIb molecule was significantly decreased (approximately 6% of the control level). Because the precursor GPIIb molecule is assembled with GPIIIa in the endoplasmic reticulum (ER) and its processing, as well as stability, is dependent on the GPIIIa subunit, the defective GPIIb molecule may be rapidly degraded by the intrinsic quality control system of the ER due to its inability to form a stable heterodimer complex as a consequence of its misfolded structure. Although we did not confirm that the GPIIIa genes of this individual were normal, GPIIIa may be secondarily decreased (approximately 11% of control), because a large part of it could not be complexed, making it vulnerable to proteolysis. To elucidate the molecular basis for GT, we propose here a classification of GT based on the biosynthetic pathway of the GPIIb-IIIa complex.

Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3212-3218 ◽  
Author(s):  
A Kato ◽  
K Yamamoto ◽  
S Miyazaki ◽  
SM Jung ◽  
M Moroi ◽  
...  

The genetic basis for Glanzmann's thrombasthenia (GT) was elucidated on a compound heterozygote with glycoprotein (GP)IIb gene: an opal mutation at the end of exon 17 (CGA----TGA) results in only a trace amount of GPIIb mRNA, and a splicing mutation at the acceptor site of exon 26 (CAG----GAG) causes an in-frame, exon skipping process from exon 25 to 27. This aberrant transcript encodes a single-chain polypeptide characterized by a 42-amino acid deletion, which includes the proteolytic cleavage site(s) and a unique, proline-rich region at the location corresponding to the carboxyl-terminal of the normal GPIIb alpha-chain. These characteristics are shared by a previously reported defective GPIIb molecule, which is neither assembled with GPIIIa nor transported to the cellular surface. Despite its normal transcription level, expression of the present defective GPIIb molecule was significantly decreased (approximately 6% of the control level). Because the precursor GPIIb molecule is assembled with GPIIIa in the endoplasmic reticulum (ER) and its processing, as well as stability, is dependent on the GPIIIa subunit, the defective GPIIb molecule may be rapidly degraded by the intrinsic quality control system of the ER due to its inability to form a stable heterodimer complex as a consequence of its misfolded structure. Although we did not confirm that the GPIIIa genes of this individual were normal, GPIIIa may be secondarily decreased (approximately 11% of control), because a large part of it could not be complexed, making it vulnerable to proteolysis. To elucidate the molecular basis for GT, we propose here a classification of GT based on the biosynthetic pathway of the GPIIb-IIIa complex.


Platelets ◽  
2011 ◽  
Vol 22 (5) ◽  
pp. 321-327 ◽  
Author(s):  
A. Farsinejad ◽  
H. Abolghasemi ◽  
A. Kazemi ◽  
M. Aghaiipour ◽  
E. Hadjati ◽  
...  

2002 ◽  
Vol 87 (06) ◽  
pp. 1034-1042 ◽  
Author(s):  
Giovanna D’Andrea ◽  
Donatella Colaizzo ◽  
Gennaro Vecchione ◽  
Elvira Grandone ◽  
Giovanni Di Minno ◽  
...  

SummaryGlanzmann’s thrombasthenia (GT) is a genetically heterogeneous autosomal recessive syndrome associated with a bleeding tendency. To elucidate molecular basis of GT we have screened for mutations 30 GT patients. On the whole, 21 different candidate causal mutations, 17 in the αIIb and 4 in the β3 gene have been found. Only two (αIIb Pro145Ala and IVS3(−3)-418del) have been previously reported. Nine mutations (42.9%) were likely to produce truncated proteins, whereas the remaining 12 were missense mutations that affected highly conserved residues in αIIb and β3 genes. Six mutations were found in different patients suggesting a possible founder effect. The wide spectrum of expressivity, ranging from mild to severe also among patients carrying the same mutations, provided evidence for a role of different loci or circumstantial factors. In conclusion, we have identified a spectrum of unreported mutations that may be of value to unravel the role of specific regions of αIIb and β3 genes.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 414-420 ◽  
Author(s):  
H Peretz ◽  
N Rosenberg ◽  
S Usher ◽  
E Graff ◽  
PJ Newman ◽  
...  

Glanzmann's thrombasthenia is a bleeding disorder characterized by a decrease or absence of the functional platelet membrane glycoprotein (GP) complex, GPIIb/IIIa (alpha IIb beta 3). We describe a new deletion- insertion mutation in the GPIIb gene causing type I Glanzmann's thrombasthenia in two siblings of a consanguineous Iranian-Jewish family. The proband's platelets bound more antibodies against the vitronectin receptor-alpha V beta 3 than normal platelets, suggesting a normal GPIIIa (beta 3) gene and a defect in the GPIIb gene. Sequencing of amplified cDNA and genomic DNA fragments showed a 6-bp deletion and 31-bp insertion in exon 25 of the GPIIb gene. The predominant platelet GPIIb mRNA of the proband was a product of the splicing of exon 24 to a cryptic AG acceptor site in the insertion and encoded for deletion of amino acids Leu817-Asn826 and insertion of eight different amino acids. Cotransfection of COS-7 cells with expression vectors containing wild- type GPIIIa cDNA and the mutated GPIIb cDNA failed to produce detectable amounts of GPIIb/IIIa on the surface of the cells. Allele- specific restriction analysis of genomic DNA of family members showed homozygosity for the mutation in the affected siblings, heterozygosity in the parents, and homozygosity for the normal allele in an unaffected sibling. The observed mutation is in a region that is conserved from rodents to humans and has been suggested to be involved in the interaction between GPIIb and GPIIIa when these GPs are complexed in solution.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 414-420 ◽  
Author(s):  
H Peretz ◽  
N Rosenberg ◽  
S Usher ◽  
E Graff ◽  
PJ Newman ◽  
...  

Abstract Glanzmann's thrombasthenia is a bleeding disorder characterized by a decrease or absence of the functional platelet membrane glycoprotein (GP) complex, GPIIb/IIIa (alpha IIb beta 3). We describe a new deletion- insertion mutation in the GPIIb gene causing type I Glanzmann's thrombasthenia in two siblings of a consanguineous Iranian-Jewish family. The proband's platelets bound more antibodies against the vitronectin receptor-alpha V beta 3 than normal platelets, suggesting a normal GPIIIa (beta 3) gene and a defect in the GPIIb gene. Sequencing of amplified cDNA and genomic DNA fragments showed a 6-bp deletion and 31-bp insertion in exon 25 of the GPIIb gene. The predominant platelet GPIIb mRNA of the proband was a product of the splicing of exon 24 to a cryptic AG acceptor site in the insertion and encoded for deletion of amino acids Leu817-Asn826 and insertion of eight different amino acids. Cotransfection of COS-7 cells with expression vectors containing wild- type GPIIIa cDNA and the mutated GPIIb cDNA failed to produce detectable amounts of GPIIb/IIIa on the surface of the cells. Allele- specific restriction analysis of genomic DNA of family members showed homozygosity for the mutation in the affected siblings, heterozygosity in the parents, and homozygosity for the normal allele in an unaffected sibling. The observed mutation is in a region that is conserved from rodents to humans and has been suggested to be involved in the interaction between GPIIb and GPIIIa when these GPs are complexed in solution.


1991 ◽  
Vol 66 (04) ◽  
pp. 500-504 ◽  
Author(s):  
H Peretz ◽  
U Seligsohn ◽  
E Zwang ◽  
B S Coller ◽  
P J Newman

SummarySevere Glanzmann's thrombasthenia is relatively frequent in Iraqi-Jews and Arabs residing in Israel. We have recently described the mutations responsible for the disease in Iraqi-Jews – an 11 base pair deletion in exon 12 of the glycoprotein IIIa gene, and in Arabs – a 13 base pair deletion at the AG acceptor splice site of exon 4 on the glycoprotein IIb gene. In this communication we show that the Iraqi-Jewish mutation can be identified directly by polymerase chain reaction and gel electrophoresis. With specially designed oligonucleotide primers encompassing the mutation site, an 80 base pair segment amplified in healthy controls was clearly distinguished from the 69 base pair segment produced in patients. Patients from 11 unrelated Iraqi-Jewish families had the same mutation. The Arab mutation was identified by first amplifying a DNA segment consisting of 312 base pairs in controls and of 299 base pairs in patients, and then digestion by a restriction enzyme Stu-1, which recognizes a site that is absent in the mutant gene. In controls the 312 bp segment was digested into 235 and 77 bp fragments, while in patients there was no change in the size of the amplified 299 bp segment. The mutation was found in patients from 3 out of 5 unrelated Arab families. Both Iraqi-Jewish and Arab mutations were detectable in DNA extracted from blood and urine samples. The described simple methods of identifying the mutations should be useful for detection of the numerous potential carriers among the affected kindreds and for prenatal diagnosis using DNA extracted from chorionic villi samples.


1995 ◽  
Vol 74 (06) ◽  
pp. 1533-1540 ◽  
Author(s):  
Pål André Holme ◽  
Nils Olav Solum ◽  
Frank Brosstad ◽  
Nils Egberg ◽  
Tomas L Lindahl

SummaryThe mechanism of formation of platelet-derived microvesicles remains controversial.The aim of the present work was to study the formation of microvesicles in view of a possible involvement of the GPIIb-IIIa complex, and of exposure of negatively charged phospholipids as procoagulant material on the platelet surface. This was studied in blood from three Glanzmann’s thrombasthenia patients lacking GPIIb-IIIa and healthy blood donors. MAb FN52 against CD9 which activates the complement system and produces microvesicles due to a membrane permeabilization, ADP (9.37 μM), and the thrombin receptor agonist peptide SFLLRN (100 μM) that activates platelets via G-proteins were used as inducers. In a series of experiments platelets were also preincubated with PGE1 (20 μM). The number of liberated microvesicles, as per cent of the total number of particles (including platelets), was measured using flow cytometry with FITC conjugated antibodies against GPIIIa or GPIb. Activation of GPIIb-IIIa was detected as binding of PAC-1, and exposure of aminophospholipids as binding of annexin V. With normal donors, activation of the complement system induced a reversible PAC-1 binding during shape change. A massive binding of annexin V was seen during shape change as an irreversible process, as well as formation of large numbers of microvesicles (60.6 ±2.7%) which continued after reversal of the PAC-1 binding. Preincubation with PGE1 did not prevent binding of annexin V, nor formation of microvesicles (49.5 ± 2.7%), but abolished shape change and PAC-1 binding after complement activation. Thrombasthenic platelets behaved like normal platelets after activation of complement except for lack of PAC-1 binding (also with regard to the effect of PGE1 and microvesicle formation). Stimulation of normal platelets with 100 μM SFLLRN gave 16.3 ± 1.2% microvesicles, and strong PAC-1 and annexin V binding. After preincubation with PGE1 neither PAC-1 nor annexin V binding, nor any significant amount of microvesicles could be detected. SFLLRN activation of the thrombasthenic platelets produced a small but significant number of microvesicles (6.4 ± 0.8%). Incubation of thrombasthenic platelets with SFLLRN after preincubation with PGE1, gave results identical to those of normal platelets. ADP activation of normal platelets gave PAC-1 binding, but no significant annexin V labelling, nor production of microvesicles. Thus, different inducers of the shedding of microvesicles seem to act by different mechanisms. For all inducers there was a strong correlation between the exposure of procoagulant surface and formation of microvesicles, suggesting that the mechanism of microvesicle formation is linked to the exposure of aminophospholipids. The results also show that the GPIIb-IIIa complex is not required for formation of microvesicles after activation of the complement system, but seems to be of importance, but not absolutely required, after stimulation with SFLLRN.


Sign in / Sign up

Export Citation Format

Share Document