scholarly journals Treatment of newly diagnosed acute myelogenous leukemia with granulocyte-macrophage colony-stimulating factor (GM-CSF) before and during continuous-infusion high-dose ara-C + daunorubicin: comparison to patients treated without GM-CSF

Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2246-2255 ◽  
Author(s):  
E Estey ◽  
PF Thall ◽  
H Kantarjian ◽  
S O'Brien ◽  
CA Koller ◽  
...  

Abstract We gave 56 patients with newly diagnosed acute myelogenous leukemia (AML) granulocyte-macrophage colony-stimulating factor (GM-CSF) 20 or 125 micrograms/m2 once daily subcutaneously before (for up to 8 days or until GM-CSF-related complications developed) and during, or only during (patients presenting with blast counts greater than 50,000 or other leukemia-related complications) ara-C (1.5 g/m2 daily x 4 by continuous infusion) and daunorubicin (45 mg/m2 daily x 3) chemotherapy. Because results seemed independent of GM-CSF schedule, we compared results in these 56 patients with results in 176 patients with newly diagnosed AML given the same dose and schedule of ara-C without GM-CSF (110 patients ara-C alone, 66 patients ara-C + amsacrine or mitoxantrone). Comparison involved fitting a logistic regression model predicting probability of complete remission (CR) and a Cox regression model to predict survival (most patients in all three studies were dead) with treatment included as a covariate in both analyses. After adjusting for other prognostically significant covariates [presence of an antecedent hematologic disorder, an Inv (16), t(8;21), or abnormalities of chromosomes 5 and/or 7, performance status, age, bilirubin], treatment with ara-C + daunorubicin + GM-CSF was predictive of both a lower CR rate and a lower survival probability. There were no treatment-covariate interactions, suggesting that the negative effect of this GM-CSF treatment regime was not an artifact of some imbalance in patient characteristics. The unadjusted Kaplan-Meier hazard rate of the ara-C + daunorubicin + GM-CSF group was not uniquely high during the initial 4 weeks after start of therapy, but was highest among the three treatment groups throughout weeks 5 to 16, suggesting that the negative effect of this treatment was not caused by acute toxicity. Patients who did not enter CR with this treatment tended to have persistent leukemia rather than prolonged marrow aplasia, suggesting that this treatment and, in particular, GM-CSF may increase resistance of myeloid leukemia cells to chemotherapy. To date, relapse rates are similar in all three groups (P = .43) (as are survival rates once patients are in CR) but much of the remission duration data is heavily censored, unlike the survival data. Our results suggest caution in the use of GM-CSF to sensitize myeloid leukemia cells to daunorubicin + ara- C chemotherapy.

Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2246-2255
Author(s):  
E Estey ◽  
PF Thall ◽  
H Kantarjian ◽  
S O'Brien ◽  
CA Koller ◽  
...  

We gave 56 patients with newly diagnosed acute myelogenous leukemia (AML) granulocyte-macrophage colony-stimulating factor (GM-CSF) 20 or 125 micrograms/m2 once daily subcutaneously before (for up to 8 days or until GM-CSF-related complications developed) and during, or only during (patients presenting with blast counts greater than 50,000 or other leukemia-related complications) ara-C (1.5 g/m2 daily x 4 by continuous infusion) and daunorubicin (45 mg/m2 daily x 3) chemotherapy. Because results seemed independent of GM-CSF schedule, we compared results in these 56 patients with results in 176 patients with newly diagnosed AML given the same dose and schedule of ara-C without GM-CSF (110 patients ara-C alone, 66 patients ara-C + amsacrine or mitoxantrone). Comparison involved fitting a logistic regression model predicting probability of complete remission (CR) and a Cox regression model to predict survival (most patients in all three studies were dead) with treatment included as a covariate in both analyses. After adjusting for other prognostically significant covariates [presence of an antecedent hematologic disorder, an Inv (16), t(8;21), or abnormalities of chromosomes 5 and/or 7, performance status, age, bilirubin], treatment with ara-C + daunorubicin + GM-CSF was predictive of both a lower CR rate and a lower survival probability. There were no treatment-covariate interactions, suggesting that the negative effect of this GM-CSF treatment regime was not an artifact of some imbalance in patient characteristics. The unadjusted Kaplan-Meier hazard rate of the ara-C + daunorubicin + GM-CSF group was not uniquely high during the initial 4 weeks after start of therapy, but was highest among the three treatment groups throughout weeks 5 to 16, suggesting that the negative effect of this treatment was not caused by acute toxicity. Patients who did not enter CR with this treatment tended to have persistent leukemia rather than prolonged marrow aplasia, suggesting that this treatment and, in particular, GM-CSF may increase resistance of myeloid leukemia cells to chemotherapy. To date, relapse rates are similar in all three groups (P = .43) (as are survival rates once patients are in CR) but much of the remission duration data is heavily censored, unlike the survival data. Our results suggest caution in the use of GM-CSF to sensitize myeloid leukemia cells to daunorubicin + ara- C chemotherapy.


Blood ◽  
1992 ◽  
Vol 80 (11) ◽  
pp. 2883-2890 ◽  
Author(s):  
K Bhalla ◽  
C Tang ◽  
AM Ibrado ◽  
S Grant ◽  
E Tourkina ◽  
...  

Abstract High dose Ara-C (HIDAC) induces programmed cell death (PCD) or apoptosis in vitro in human myeloid leukemia cells, which correlates with the inhibition of their clonogenic survival. Hematopoietic growth factors (HGFs) granulocyte-macrophage colony-stimulating factor (GM- CSF) and interleukin-3 (IL-3) have been demonstrated to enhance the metabolism and cytotoxic effects of HIDAC against leukemic progenitor cells. We examined the effect of pIXY 321 (a GM-CSF/IL-3 fusion protein) on HIDAC-induced PCD and related gene expressions as well as HIDAC-mediated colony growth inhibition of human myeloid leukemia cells. Unlike the previously described effects of HGFs on normal bone marrow progenitor cells, exposure to pIXY 321 alone for up to 24 hours did not suppress PCD in HL-60 or KG-1 cells. However, exposure to pIXY 321 for 20 hours followed by a combined treatment with Ara-C plus pIXY 321 for 4 or 24 hours versus treatment with Ara-C alone significantly enhanced the oligonucleosomal DNA fragmentation characteristic of PCD. This was temporally associated with a marked induction of c-jun expression and a significant decrease in BCL-2. In addition, the treatment with pIXY 321 plus HIDAC versus HIDAC alone produced a significantly greater inhibition of HL-60 colony growth. These findings highlight an additional mechanism of HIDAC-induced leukemic cell death that is augmented by cotreatment with pIXY 321 and may contribute toward an improved antileukemic activity of HIDAC.


Blood ◽  
1991 ◽  
Vol 78 (5) ◽  
pp. 1190-1197 ◽  
Author(s):  
T Buchner ◽  
W Hiddemann ◽  
M Koenigsmann ◽  
M Zuhlsdorf ◽  
B Wormann ◽  
...  

Abstract To reduce critical neutropenia after chemotherapy (CT) for acute myeloid leukemia (AML) we administered recombinant human granulocyte- macrophage colony-stimulating factor (GM-CSF) to patients over the age of 65 years with newly diagnosed AML and to patients with early or second relapse. CT was 9-day 6-thioguanine, ara-C, and daunorubicin (TAD9) in newly diagnosed AML and sequential high-dose ara-C and mitoxantrone (S-HAM) for relapse. In patients whose bone marrow was free from blasts a continuous intravenous infusion of GM-CSF 250 micrograms/m2/d started on day 4 after CT. Thirty-six patients entered the study and 30 of them did receive GM-CSF. For comparison, a historical control group of 56 patients was used. Complete remission rate was 50% (18 of 36) versus 32% in controls (P = .09), and early death rate was 14% versus 39% (P = .009). Treatment with GM-CSF was not associated with major adverse events. Two patients showed a marked leukemic regrowth that was completely reversible in one patient and appeared to be GM-CSF independent in the other patient. Remission duration does not seem to be reduced after GM-CSF. Under GM-CSF the blood neutrophils recovered 6 and 9 days earlier in the TAD9 (P = .009) and S-HAM (P = .043) groups associated with a rapid clearance of infections in most patients. We conclude that GM-CSF was of therapeutic benefit to our patients and this provides a basis for larger controlled trials.


Blood ◽  
1990 ◽  
Vol 75 (9) ◽  
pp. 1766-1769
Author(s):  
EH Estey ◽  
D Dixon ◽  
HM Kantarjian ◽  
MJ Keating ◽  
K McCredie ◽  
...  

We administered recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) (120 micrograms/m2/d by continuous intravenous [IV] infusion) to 12 patients with newly diagnosed acute myeloid leukemia (AML) at relatively high risk of early death during remission induction. GM-CSF began 3 days after completion of induction chemotherapy (ara-C 1.5 g/m2 d x 4 days by continuous IV infusion after a 3 g/m2 bolus). Rates of fatal infection (42%), pneumonia and/or sepsis (83%), and CR (50%) did not differ significantly (P less than .05) from those observed after administration of the identical chemotherapy without GM-CSF to 53 historical controls with newly diagnosed AML at similarly high risk of early death. There were no significant differences between the GM-CSF-treated and the historical groups in the time required to reach neutrophil counts of 500 or 1,000/microL after administration of chemotherapy. Four patients died of infection before they could have benefited from the earliest recovery of neutrophil count observed in patients who entered CR. Growth of leukemia after GM-CSF administration was observed in only 1 of the 8 patients who survived long enough for response to induction therapy to be fully evaluated. This observation suggests that it might be safe to undertake larger, randomized studies, perhaps using earlier administration of GM-CSF, to definitively determine the role of GM-CSF added to chemotherapy in patients with newly diagnosed AML.


Blood ◽  
1991 ◽  
Vol 78 (5) ◽  
pp. 1190-1197
Author(s):  
T Buchner ◽  
W Hiddemann ◽  
M Koenigsmann ◽  
M Zuhlsdorf ◽  
B Wormann ◽  
...  

To reduce critical neutropenia after chemotherapy (CT) for acute myeloid leukemia (AML) we administered recombinant human granulocyte- macrophage colony-stimulating factor (GM-CSF) to patients over the age of 65 years with newly diagnosed AML and to patients with early or second relapse. CT was 9-day 6-thioguanine, ara-C, and daunorubicin (TAD9) in newly diagnosed AML and sequential high-dose ara-C and mitoxantrone (S-HAM) for relapse. In patients whose bone marrow was free from blasts a continuous intravenous infusion of GM-CSF 250 micrograms/m2/d started on day 4 after CT. Thirty-six patients entered the study and 30 of them did receive GM-CSF. For comparison, a historical control group of 56 patients was used. Complete remission rate was 50% (18 of 36) versus 32% in controls (P = .09), and early death rate was 14% versus 39% (P = .009). Treatment with GM-CSF was not associated with major adverse events. Two patients showed a marked leukemic regrowth that was completely reversible in one patient and appeared to be GM-CSF independent in the other patient. Remission duration does not seem to be reduced after GM-CSF. Under GM-CSF the blood neutrophils recovered 6 and 9 days earlier in the TAD9 (P = .009) and S-HAM (P = .043) groups associated with a rapid clearance of infections in most patients. We conclude that GM-CSF was of therapeutic benefit to our patients and this provides a basis for larger controlled trials.


Blood ◽  
2001 ◽  
Vol 98 (6) ◽  
pp. 1927-1934 ◽  
Author(s):  
Alex Senchenkov ◽  
Tie-Yan Han ◽  
Hongtao Wang ◽  
Arthur E. Frankel ◽  
Timothy J. Kottke ◽  
...  

Abstract DT388–GM-CSF, a targeted fusion toxin constructed by conjugation of human granulocyte-macrophage colony-stimulating factor (GM-CSF) with the catalytic and translocation domains of diphtheria toxin, is presently in phase I trials for patients with resistant acute myeloid leukemia. HL-60/VCR, a multidrug-resistant human myeloid leukemia cell line, and wild-type HL-60 cells were used to study the impact of DT388–GM-CSF on metabolism of ceramide, a modulator of apoptosis. After 48 hours with DT388–GM-CSF (10 nM), ceramide levels in HL-60/VCR cells rose 6-fold and viability fell to 10%, whereas GM-CSF alone was without influence. Similar results were obtained in HL-60 cells. Examination of the time course revealed that protein synthesis decreased by about 50% and cellular ceramide levels increased by about 80% between 4 and 6 hours after addition of DT388–GM-CSF. By 6 hours this was accompanied by activation of caspase-9, followed by activation of caspase-3, cleavage of caspase substrates, and chromatin fragmentation. Hygromycin B and emetine failed to elevate ceramide levels or induce apoptosis at concentrations that inhibited protein synthesis by 50%. Exposure to C6-ceramide inhibited protein synthesis (EC50∼5 μM) and decreased viability (EC50 ∼6 μM). Sphingomyelinase treatment depleted sphingomyelin by about 10%, while increasing ceramide levels and inhibiting protein synthesis. Diphtheria toxin increased ceramide and decreased sphingomyelin in U-937 cells, a cell line extremely sensitive to diphtheria toxin; exposure to DT388–GM-CSF showed sensitivity at less than 1.0 pM. Diphtheria toxin and conjugate trigger ceramide formation that contributes to apoptosis in human leukemia cells through caspase activation and inhibition of protein synthesis.


Blood ◽  
1992 ◽  
Vol 80 (11) ◽  
pp. 2883-2890
Author(s):  
K Bhalla ◽  
C Tang ◽  
AM Ibrado ◽  
S Grant ◽  
E Tourkina ◽  
...  

High dose Ara-C (HIDAC) induces programmed cell death (PCD) or apoptosis in vitro in human myeloid leukemia cells, which correlates with the inhibition of their clonogenic survival. Hematopoietic growth factors (HGFs) granulocyte-macrophage colony-stimulating factor (GM- CSF) and interleukin-3 (IL-3) have been demonstrated to enhance the metabolism and cytotoxic effects of HIDAC against leukemic progenitor cells. We examined the effect of pIXY 321 (a GM-CSF/IL-3 fusion protein) on HIDAC-induced PCD and related gene expressions as well as HIDAC-mediated colony growth inhibition of human myeloid leukemia cells. Unlike the previously described effects of HGFs on normal bone marrow progenitor cells, exposure to pIXY 321 alone for up to 24 hours did not suppress PCD in HL-60 or KG-1 cells. However, exposure to pIXY 321 for 20 hours followed by a combined treatment with Ara-C plus pIXY 321 for 4 or 24 hours versus treatment with Ara-C alone significantly enhanced the oligonucleosomal DNA fragmentation characteristic of PCD. This was temporally associated with a marked induction of c-jun expression and a significant decrease in BCL-2. In addition, the treatment with pIXY 321 plus HIDAC versus HIDAC alone produced a significantly greater inhibition of HL-60 colony growth. These findings highlight an additional mechanism of HIDAC-induced leukemic cell death that is augmented by cotreatment with pIXY 321 and may contribute toward an improved antileukemic activity of HIDAC.


Sign in / Sign up

Export Citation Format

Share Document