scholarly journals Granulocyte-macrophage colony-stimulating factor/interleukin-3 fusion protein (pIXY 321) enhances high-dose Ara-C-induced programmed cell death or apoptosis in human myeloid leukemia cells

Blood ◽  
1992 ◽  
Vol 80 (11) ◽  
pp. 2883-2890
Author(s):  
K Bhalla ◽  
C Tang ◽  
AM Ibrado ◽  
S Grant ◽  
E Tourkina ◽  
...  

High dose Ara-C (HIDAC) induces programmed cell death (PCD) or apoptosis in vitro in human myeloid leukemia cells, which correlates with the inhibition of their clonogenic survival. Hematopoietic growth factors (HGFs) granulocyte-macrophage colony-stimulating factor (GM- CSF) and interleukin-3 (IL-3) have been demonstrated to enhance the metabolism and cytotoxic effects of HIDAC against leukemic progenitor cells. We examined the effect of pIXY 321 (a GM-CSF/IL-3 fusion protein) on HIDAC-induced PCD and related gene expressions as well as HIDAC-mediated colony growth inhibition of human myeloid leukemia cells. Unlike the previously described effects of HGFs on normal bone marrow progenitor cells, exposure to pIXY 321 alone for up to 24 hours did not suppress PCD in HL-60 or KG-1 cells. However, exposure to pIXY 321 for 20 hours followed by a combined treatment with Ara-C plus pIXY 321 for 4 or 24 hours versus treatment with Ara-C alone significantly enhanced the oligonucleosomal DNA fragmentation characteristic of PCD. This was temporally associated with a marked induction of c-jun expression and a significant decrease in BCL-2. In addition, the treatment with pIXY 321 plus HIDAC versus HIDAC alone produced a significantly greater inhibition of HL-60 colony growth. These findings highlight an additional mechanism of HIDAC-induced leukemic cell death that is augmented by cotreatment with pIXY 321 and may contribute toward an improved antileukemic activity of HIDAC.

Blood ◽  
1992 ◽  
Vol 80 (11) ◽  
pp. 2883-2890 ◽  
Author(s):  
K Bhalla ◽  
C Tang ◽  
AM Ibrado ◽  
S Grant ◽  
E Tourkina ◽  
...  

Abstract High dose Ara-C (HIDAC) induces programmed cell death (PCD) or apoptosis in vitro in human myeloid leukemia cells, which correlates with the inhibition of their clonogenic survival. Hematopoietic growth factors (HGFs) granulocyte-macrophage colony-stimulating factor (GM- CSF) and interleukin-3 (IL-3) have been demonstrated to enhance the metabolism and cytotoxic effects of HIDAC against leukemic progenitor cells. We examined the effect of pIXY 321 (a GM-CSF/IL-3 fusion protein) on HIDAC-induced PCD and related gene expressions as well as HIDAC-mediated colony growth inhibition of human myeloid leukemia cells. Unlike the previously described effects of HGFs on normal bone marrow progenitor cells, exposure to pIXY 321 alone for up to 24 hours did not suppress PCD in HL-60 or KG-1 cells. However, exposure to pIXY 321 for 20 hours followed by a combined treatment with Ara-C plus pIXY 321 for 4 or 24 hours versus treatment with Ara-C alone significantly enhanced the oligonucleosomal DNA fragmentation characteristic of PCD. This was temporally associated with a marked induction of c-jun expression and a significant decrease in BCL-2. In addition, the treatment with pIXY 321 plus HIDAC versus HIDAC alone produced a significantly greater inhibition of HL-60 colony growth. These findings highlight an additional mechanism of HIDAC-induced leukemic cell death that is augmented by cotreatment with pIXY 321 and may contribute toward an improved antileukemic activity of HIDAC.


Blood ◽  
1991 ◽  
Vol 78 (5) ◽  
pp. 1190-1197 ◽  
Author(s):  
T Buchner ◽  
W Hiddemann ◽  
M Koenigsmann ◽  
M Zuhlsdorf ◽  
B Wormann ◽  
...  

Abstract To reduce critical neutropenia after chemotherapy (CT) for acute myeloid leukemia (AML) we administered recombinant human granulocyte- macrophage colony-stimulating factor (GM-CSF) to patients over the age of 65 years with newly diagnosed AML and to patients with early or second relapse. CT was 9-day 6-thioguanine, ara-C, and daunorubicin (TAD9) in newly diagnosed AML and sequential high-dose ara-C and mitoxantrone (S-HAM) for relapse. In patients whose bone marrow was free from blasts a continuous intravenous infusion of GM-CSF 250 micrograms/m2/d started on day 4 after CT. Thirty-six patients entered the study and 30 of them did receive GM-CSF. For comparison, a historical control group of 56 patients was used. Complete remission rate was 50% (18 of 36) versus 32% in controls (P = .09), and early death rate was 14% versus 39% (P = .009). Treatment with GM-CSF was not associated with major adverse events. Two patients showed a marked leukemic regrowth that was completely reversible in one patient and appeared to be GM-CSF independent in the other patient. Remission duration does not seem to be reduced after GM-CSF. Under GM-CSF the blood neutrophils recovered 6 and 9 days earlier in the TAD9 (P = .009) and S-HAM (P = .043) groups associated with a rapid clearance of infections in most patients. We conclude that GM-CSF was of therapeutic benefit to our patients and this provides a basis for larger controlled trials.


Blood ◽  
1991 ◽  
Vol 78 (5) ◽  
pp. 1190-1197
Author(s):  
T Buchner ◽  
W Hiddemann ◽  
M Koenigsmann ◽  
M Zuhlsdorf ◽  
B Wormann ◽  
...  

To reduce critical neutropenia after chemotherapy (CT) for acute myeloid leukemia (AML) we administered recombinant human granulocyte- macrophage colony-stimulating factor (GM-CSF) to patients over the age of 65 years with newly diagnosed AML and to patients with early or second relapse. CT was 9-day 6-thioguanine, ara-C, and daunorubicin (TAD9) in newly diagnosed AML and sequential high-dose ara-C and mitoxantrone (S-HAM) for relapse. In patients whose bone marrow was free from blasts a continuous intravenous infusion of GM-CSF 250 micrograms/m2/d started on day 4 after CT. Thirty-six patients entered the study and 30 of them did receive GM-CSF. For comparison, a historical control group of 56 patients was used. Complete remission rate was 50% (18 of 36) versus 32% in controls (P = .09), and early death rate was 14% versus 39% (P = .009). Treatment with GM-CSF was not associated with major adverse events. Two patients showed a marked leukemic regrowth that was completely reversible in one patient and appeared to be GM-CSF independent in the other patient. Remission duration does not seem to be reduced after GM-CSF. Under GM-CSF the blood neutrophils recovered 6 and 9 days earlier in the TAD9 (P = .009) and S-HAM (P = .043) groups associated with a rapid clearance of infections in most patients. We conclude that GM-CSF was of therapeutic benefit to our patients and this provides a basis for larger controlled trials.


2018 ◽  
pp. 1-6
Author(s):  
Neemat M. Kassem ◽  
Alya M. Ayad ◽  
Noha M. El Husseiny ◽  
Doaa M. El-Demerdash ◽  
Hebatallah A. Kassem ◽  
...  

Purpose Granulocyte-macrophage colony-stimulating factor (GM-CSF) cytokine stimulates growth, differentiation, and function of myeloid progenitors. We aimed to study the role of GM-CSF gene expression, its protein, and antibodies in patients with acute myeloid leukemia/myelodysplastic syndromes (AML/MDS) and their correlation to disease behavior and treatment outcome. The study included 50 Egyptian patients with AML/MDS in addition to 20 healthy volunteers as control subjects. Patients and Methods Assessment of GM-CSF gene expression was performed by quantitative real-time polymerase chain reaction. GM-CSF proteins and antibodies were assessed by enzyme-linked immunosorbent assay. Results There was significant decrease in GM-CSF gene expression ( P = .008), increase in serum level of GM-CSF protein ( P = .0001), and increase in anti–GM-CSF antibodies ( P = .001) in patients with AML/MDS compared with healthy control subjects. In addition, there was a significant negative correlation between serum levels of GM-CSF protein and initial peripheral blood blasts, percentage as well as response to therapy. Conclusion Any alteration in GM-CSF gene expression could have implications in leukemogenesis. In addition, GM-CSF protein serum levels could be used to predict outcome of therapy. GM-CSF antibodies may also play a role in the pathogenesis of AML/MDS. The use of these GM-CSF parameters for disease monitoring and as markers of disease activity needs further research.


Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2246-2255 ◽  
Author(s):  
E Estey ◽  
PF Thall ◽  
H Kantarjian ◽  
S O'Brien ◽  
CA Koller ◽  
...  

Abstract We gave 56 patients with newly diagnosed acute myelogenous leukemia (AML) granulocyte-macrophage colony-stimulating factor (GM-CSF) 20 or 125 micrograms/m2 once daily subcutaneously before (for up to 8 days or until GM-CSF-related complications developed) and during, or only during (patients presenting with blast counts greater than 50,000 or other leukemia-related complications) ara-C (1.5 g/m2 daily x 4 by continuous infusion) and daunorubicin (45 mg/m2 daily x 3) chemotherapy. Because results seemed independent of GM-CSF schedule, we compared results in these 56 patients with results in 176 patients with newly diagnosed AML given the same dose and schedule of ara-C without GM-CSF (110 patients ara-C alone, 66 patients ara-C + amsacrine or mitoxantrone). Comparison involved fitting a logistic regression model predicting probability of complete remission (CR) and a Cox regression model to predict survival (most patients in all three studies were dead) with treatment included as a covariate in both analyses. After adjusting for other prognostically significant covariates [presence of an antecedent hematologic disorder, an Inv (16), t(8;21), or abnormalities of chromosomes 5 and/or 7, performance status, age, bilirubin], treatment with ara-C + daunorubicin + GM-CSF was predictive of both a lower CR rate and a lower survival probability. There were no treatment-covariate interactions, suggesting that the negative effect of this GM-CSF treatment regime was not an artifact of some imbalance in patient characteristics. The unadjusted Kaplan-Meier hazard rate of the ara-C + daunorubicin + GM-CSF group was not uniquely high during the initial 4 weeks after start of therapy, but was highest among the three treatment groups throughout weeks 5 to 16, suggesting that the negative effect of this treatment was not caused by acute toxicity. Patients who did not enter CR with this treatment tended to have persistent leukemia rather than prolonged marrow aplasia, suggesting that this treatment and, in particular, GM-CSF may increase resistance of myeloid leukemia cells to chemotherapy. To date, relapse rates are similar in all three groups (P = .43) (as are survival rates once patients are in CR) but much of the remission duration data is heavily censored, unlike the survival data. Our results suggest caution in the use of GM-CSF to sensitize myeloid leukemia cells to daunorubicin + ara- C chemotherapy.


2000 ◽  
Vol 18 (9) ◽  
pp. 1824-1830 ◽  
Author(s):  
Omer N. Koç ◽  
Stanton L. Gerson ◽  
Brenda W. Cooper ◽  
Mary Laughlin ◽  
Howard Meyerson ◽  
...  

PURPOSE: Patient response to hematopoietic progenitor-cell mobilizing regimens seems to vary considerably, making comparison between regimens difficult. To eliminate this inter-patient variability, we designed a cross-over trial and prospectively compared the number of progenitors mobilized into blood after granulocyte-macrophage colony-stimulating factor (GM-CSF) days 1 to 12 plus granulocyte colony-stimulating factor (G-CSF) days 7 to 12 (regimen G) with the number of progenitors after cyclophosphamide plus G-CSF days 3 to 14 (regimen C) in the same patient. PATIENTS AND METHODS: Twenty-nine patients were randomized to receive either regimen G or C first (G1 and C1, respectively) and underwent two leukaphereses. After a washout period, patients were then crossed over to the alternate regimen (C2 and G2, respectively) and underwent two additional leukaphereses. The hematopoietic progenitor-cell content of each collection was determined. In addition, toxicity and charges were tracked. RESULTS: Regimen C (n = 50) resulted in mobilization of more CD34+ cells (2.7-fold/kg/apheresis), erythroid burst-forming units (1.8-fold/kg/apheresis), and colony-forming units–granulocyte-macrophage (2.2-fold/kg/apheresis) compared with regimen G given to the same patients (n = 46; paired t test, P < .01 for all comparisons). Compared with regimen G, regimen C resulted in better mobilization, whether it was given first (P = .025) or second (P = .02). The ability to achieve a target collection of ≥ 2 × 106 CD34+ cells/kg using two leukaphereses was 50% after G1 and 90% after C1. Three of the seven patients in whom mobilization was poor after G1 had ≥ 2 × 106 CD34+ cells/kg with two leukaphereses after C2. In contrast, when regimen G was given second (G2), seven out of 10 patients failed to achieve the target CD34+ cell dose despite adequate collections after C1. Thirty percent of the patients (nine of 29) given regimen C were admitted to the hospital because of neutropenic fever for a median duration of 4 days (range, 2 to 10 days). The higher cost of regimen C was balanced by higher CD34+ cell yield, resulting in equivalent charges based on cost per CD34+ cell collected. CONCLUSION: We report the first clinical trial that used a cross-over design showing that high-dose cyclophosphamide plus G-CSF results in mobilization of more progenitors then GM-CSF plus G-CSF when tested in the same patient regardless of sequence of administration, although the regimen is associated with greater morbidity. Patients who fail to achieve adequate mobilization after regimen G can be treated with regimen C as an effective salvage regimen, whereas patients who fail regimen C are unlikely to benefit from subsequent treatment with regimen G. The cross-over design allowed detection of significant differences between regimens in a small cohort of patients and should be considered in design of future comparisons of mobilization regimens.


Sign in / Sign up

Export Citation Format

Share Document