scholarly journals Expression of the c-mpl proto-oncogene in human hematologic malignancies

Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 877-883 ◽  
Author(s):  
I Vigon ◽  
F Dreyfus ◽  
J Melle ◽  
F Viguie ◽  
V Ribrag ◽  
...  

Abstract Similar to two other hematopoietic growth factor receptors, the c-fms (macrophage colony-stimulating factor receptor) and the c-kit genes, c- mpl has been discovered through the study of oncogenic retroviruses. Unlike c-fms and c-kit, which both belong to a subgroup of tyrosine kinase receptors, the c-mpl proto-oncogene encodes a new member of the cytokine receptor superfamily. We have studied the expression of c-mpl in a series of 105 patients with hematologic malignancies using Northern blot analysis. The levels of c-mpl transcripts in lymphoid malignancies and in chronic myeloproliferative disorders were not significantly different from those found in normal bone marrow cells, in which c-mpl was barely detectable. In contrast, c-mpl expression was increased in 26 of 51 patients with acute myeloblastic leukemia (AML) and in 5 of 16 patients with myelodysplastic syndromes. Amplification of the c-mpl gene was detected in genomic DNA of one M4 AML patient. There was no significant correlation between c-mpl expression and the French-American-British classification of AML. Patients with high c-mpl expression appeared to belong to a subgroup of AML with a low rate of complete remission and a poor prognosis, including secondary leukemia and AML with unfavorable cytogenetic abnormalities.

Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 877-883 ◽  
Author(s):  
I Vigon ◽  
F Dreyfus ◽  
J Melle ◽  
F Viguie ◽  
V Ribrag ◽  
...  

Similar to two other hematopoietic growth factor receptors, the c-fms (macrophage colony-stimulating factor receptor) and the c-kit genes, c- mpl has been discovered through the study of oncogenic retroviruses. Unlike c-fms and c-kit, which both belong to a subgroup of tyrosine kinase receptors, the c-mpl proto-oncogene encodes a new member of the cytokine receptor superfamily. We have studied the expression of c-mpl in a series of 105 patients with hematologic malignancies using Northern blot analysis. The levels of c-mpl transcripts in lymphoid malignancies and in chronic myeloproliferative disorders were not significantly different from those found in normal bone marrow cells, in which c-mpl was barely detectable. In contrast, c-mpl expression was increased in 26 of 51 patients with acute myeloblastic leukemia (AML) and in 5 of 16 patients with myelodysplastic syndromes. Amplification of the c-mpl gene was detected in genomic DNA of one M4 AML patient. There was no significant correlation between c-mpl expression and the French-American-British classification of AML. Patients with high c-mpl expression appeared to belong to a subgroup of AML with a low rate of complete remission and a poor prognosis, including secondary leukemia and AML with unfavorable cytogenetic abnormalities.


Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 2962-2968 ◽  
Author(s):  
H Ikeda ◽  
Y Kanakura ◽  
T Tamaki ◽  
A Kuriu ◽  
H Kitayama ◽  
...  

The c-kit proto-oncogene encodes a receptor tyrosine kinase that is thought to play an important role in hematopoiesis. In a series of human acute myeloblastic leukemia (AML), the expression of the c-kit proto-oncogene and its product was studied by means of Northern blot and immunoblot analyses. The c-kit mRNA was expressed in 20 of 25 cases of AML, and in those cases the product of the c-kit proto-oncogene was detected by immunoblotting with anti-c-kit antibody. The expression of c-kit transcripts and protein was barely detectable in normal bone marrow cells as a control. The expression of c-kit transcript did not correlate with the French-American-British classification nor clinical manifestations. In 6 of 11 cases that expressed c-kit product, AML cells were found to proliferate in response to recombinant human stem cell factor (rhSCF), the ligand for c-kit, and the synergistic stimulation of AML cells was observed by rhSCF and granulocyte- macrophage colony-stimulating factor. Immunoblotting with anti- phosphotyrosine antibody showed that the c-kit receptor protein was detectably phosphorylated in 7 of 12 cases tested before the stimulation with rhSCF, while the rhSCF treatment resulted in an increased tyrosine phosphorylation of c-kit in AML cells. These results indicate that c-kit proto-oncogene is expressed in most cases of AML and is functional in terms of supporting proliferation.


Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 2962-2968 ◽  
Author(s):  
H Ikeda ◽  
Y Kanakura ◽  
T Tamaki ◽  
A Kuriu ◽  
H Kitayama ◽  
...  

Abstract The c-kit proto-oncogene encodes a receptor tyrosine kinase that is thought to play an important role in hematopoiesis. In a series of human acute myeloblastic leukemia (AML), the expression of the c-kit proto-oncogene and its product was studied by means of Northern blot and immunoblot analyses. The c-kit mRNA was expressed in 20 of 25 cases of AML, and in those cases the product of the c-kit proto-oncogene was detected by immunoblotting with anti-c-kit antibody. The expression of c-kit transcripts and protein was barely detectable in normal bone marrow cells as a control. The expression of c-kit transcript did not correlate with the French-American-British classification nor clinical manifestations. In 6 of 11 cases that expressed c-kit product, AML cells were found to proliferate in response to recombinant human stem cell factor (rhSCF), the ligand for c-kit, and the synergistic stimulation of AML cells was observed by rhSCF and granulocyte- macrophage colony-stimulating factor. Immunoblotting with anti- phosphotyrosine antibody showed that the c-kit receptor protein was detectably phosphorylated in 7 of 12 cases tested before the stimulation with rhSCF, while the rhSCF treatment resulted in an increased tyrosine phosphorylation of c-kit in AML cells. These results indicate that c-kit proto-oncogene is expressed in most cases of AML and is functional in terms of supporting proliferation.


2021 ◽  
Vol 14 (5) ◽  
pp. 459
Author(s):  
Mariya Pykhtina ◽  
Svetlana Miroshnichenko ◽  
Vladimir Romanov ◽  
Antonina Grazhdantseva ◽  
Galina Kochneva ◽  
...  

In this study, two strains of the yeast P. pastoris were constructed, one of which produced authentic recombinant human granulocyte-macrophage colony-stimulating factor (ryGM-CSF), and the other was a chimera consisting of ryGM-CSF genetically fused with mature human apolipoprotein A-I (ApoA-I) (ryGM-CSF-ApoA-I). Both forms of the cytokine were secreted into the culture medium. The proteins’ yield during cultivation in flasks was 100 and 60 mg/L for ryGM-CSF and ryGM-CSF-ApoA-I, respectively. Both forms of recombinant GM-CSF stimulated the proliferation of human TF-1 erythroleukemia cells; however, the amount of chimera required was 10-fold that of authentic GM-CSF to induce a similar proliferative effect. RyGM-CSF exhibited a 2-fold proliferative effect on BFU-E (burst-forming units—erythroid) at a concentration 1.7 fold less than non-glycosylated E. coli-derived GM-CSF. The chimera together with authentic ryGM-CSF increased the number of both erythroid precursors and BMC granulocytes after 48 h of incubation of human bone marrow cells (BMCs). In addition, the chimeric form of ryGM-CSF was more effective at increasing the viability of the total amount of BMCs, decreasing apoptosis compared to the authentic form. ryGM-CSF-ApoA-I normalized the proliferation, maturation, and segmentation of neutrophils within the physiological norm, preserving the pool of blast cells under conditions of impaired granulopoiesis. The chimera form of GM-CSF exhibited the properties of a multilinear growth factor, modulating the activity of GM-CSF and, perhaps, it may be more suitable for the normalization of granulopoiesis.


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3227-3232 ◽  
Author(s):  
K Taguchi ◽  
A Shibuya ◽  
Y Inazawa ◽  
T Abe

Abstract We investigated the effects of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) and recombinant human granulocyte- CSF (rhG-CSF) on the generation of natural killer (NK) cells in vitro. NK cells were cultured from selected human bone marrow cells obtained after the elimination of mature T and NK cells. rhGM-CSF significantly suppressed the generation of CD56+ cells and NK activity (P less than .01) in a dose-dependent manner. The generation of large granular lymphocytes (LGL) was also suppressed in the presence of rhGM-CSF (P less than .01). In contrast, rhG-CSF had no effect on LGL (P greater than .05). Both rhGM-CSF and rhG-CSF had no influence on the CD56+ cell count in the peripheral blood. These results suggest that rhGM-CSF suppresses the in vitro generation of NK cells.


Blood ◽  
1983 ◽  
Vol 62 (3) ◽  
pp. 597-601 ◽  
Author(s):  
Y Yamamoto-Yamaguchi ◽  
M Tomida ◽  
M Hozumi

Abstract The effects of mouse L-cell interferon (IFN) on growth of mouse bone marrow cells and their differentiation into macrophages and granulocytes were investigated in a liquid suspension culture system with two different types of colony-stimulating factor (CSF). Within 7 days, most bone marrow cells differentiated into macrophages in the presence of macrophage colony-stimulating factor (M-CSF) derived from mouse fibroblast L929 cells, but into both granulocytes (40%) and macrophages (23%) in the presence of a granulocyte-macrophage colony- stimulating factor (GM-CSF) from mouse lung tissue. IFN inhibited growth of bone marrow cells with both M-CSF and GM-CSF, but had 20 times more effect on bone marrow cells stimulated with M-CSF than on those stimulated with GM-CSF. A low concentration of IFN (50 IU/ml) stimulated production of macrophages by GM-CSF in liquid culture medium, whereas it selectively inhibited colony formation of macrophages in semisolid agar culture. IFN caused no detectable block of late stages of differentiation; mature macrophages and granulocytes were produced even when cell proliferation was inhibited by IFN. These results indicate that IFN preferentially affects growth and differentiation of the cell lineage of macrophages among mouse bone marrow cells.


Blood ◽  
1983 ◽  
Vol 62 (3) ◽  
pp. 597-601 ◽  
Author(s):  
Y Yamamoto-Yamaguchi ◽  
M Tomida ◽  
M Hozumi

The effects of mouse L-cell interferon (IFN) on growth of mouse bone marrow cells and their differentiation into macrophages and granulocytes were investigated in a liquid suspension culture system with two different types of colony-stimulating factor (CSF). Within 7 days, most bone marrow cells differentiated into macrophages in the presence of macrophage colony-stimulating factor (M-CSF) derived from mouse fibroblast L929 cells, but into both granulocytes (40%) and macrophages (23%) in the presence of a granulocyte-macrophage colony- stimulating factor (GM-CSF) from mouse lung tissue. IFN inhibited growth of bone marrow cells with both M-CSF and GM-CSF, but had 20 times more effect on bone marrow cells stimulated with M-CSF than on those stimulated with GM-CSF. A low concentration of IFN (50 IU/ml) stimulated production of macrophages by GM-CSF in liquid culture medium, whereas it selectively inhibited colony formation of macrophages in semisolid agar culture. IFN caused no detectable block of late stages of differentiation; mature macrophages and granulocytes were produced even when cell proliferation was inhibited by IFN. These results indicate that IFN preferentially affects growth and differentiation of the cell lineage of macrophages among mouse bone marrow cells.


Blood ◽  
1988 ◽  
Vol 72 (2) ◽  
pp. 823-826 ◽  
Author(s):  
T Hoang ◽  
A Haman ◽  
O Goncalves ◽  
GG Wong ◽  
SC Clark

Abstract The effects of recombinant interleukin-6 (IL-6) on the proliferation of blast precursors present in the peripheral blood of patients with acute myeloblastic leukemia (AML) was investigated. IL-6 had little effect by itself; however, it synergized with granulocyte macrophage colony- stimulating factor (GM-CSF) and interleukin-3 (IL-3) in the stimulation of AML blast colony formation. Responsiveness of blast progenitors to IL-6 was heterogeneous. On normal bone marrow cells the same synergy was observed on granulocyte and monocyte precursors (GM-CFC), while there was no significant effect on erythroid and multipotential precursors.


Blood ◽  
1989 ◽  
Vol 74 (7) ◽  
pp. 2398-2404 ◽  
Author(s):  
MR Schaafsma ◽  
JH Falkenburg ◽  
N Duinkerken ◽  
J Van Damme ◽  
BW Altrock ◽  
...  

Abstract Interleukin-1 (IL-1) was found to act synergistically with granulocyte- macrophage colony-stimulating factor (GM-CSF) on granulocytic colony growth of normal human bone marrow cells, depleted of mononuclear phagocytes and T lymphocytes. Using CD34/HLA-DR-enriched bone marrow cells we demonstrated that this activity of IL-1 was not a direct action on hematopoietic progenitor cells, but an effect of an intermediate factor produced by residual accessory cells in response to IL-1. Neutralization experiments using an anti-IL-6 antiserum showed that IL-1-induced IL-6 did not contribute to the observed synergy. Furthermore, IL-6 by itself had neither a direct stimulatory effect on CFU-GM colony growth, nor did it act synergistically with GM-CSF on granulocytic or monocytic colony formation. Neutralization experiments with an anti-G-CSF monoclonal antibody showed that IL-1-induced G-CSF production was responsible for the synergy with GM-CSF. Using combinations of G-CSF and GM-CSF this synergistic activity could be detected at concentrations of G-CSF as low as 0.1 ng/mL (10 U/mL). Our results indicate that IL-1, but not IL-6, stimulates the GM-CSF- dependent proliferation of relatively mature myeloid progenitor cells in the presence of small numbers of accessory cells.


Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5232-5241 ◽  
Author(s):  
MR Jadus ◽  
MC Irwin ◽  
MR Irwin ◽  
RD Horansky ◽  
S Sekhon ◽  
...  

NBXFO hybridoma cells produced both the membrane and secreted isoforms of macrophage colony-stimulating factor (M-CSF). Murine bone marrow cells stimulated by the secreted form of M-CSF (sM-CSF) became Mac1+, Mac2+, Mac3+, and F4/80+ macrophages that inhibited the growth of NBXFO cells, but not L1210 or P815 tumor cells. In cytotoxicity studies, M- CSF activated macrophages and freshly isolated macrophages killed NBXFO cells in the presence of polymyxin B, eliminating the possibility that contaminating lipopolysaccharide (LPS) was responsible for the delivery of the cytotoxic signal. Retroviral-mediated transfection of T9 glioma cells with the gene for the membrane isoform of M-CSF (mM-CSF), but not for the secreted isoform of M-CSF, transferred the ability of macrophages to kill these transfected T9 cells in a mM-CSF dose- dependent manner. Macrophage-mediated killing of the mM-CSF transfected clone was blocked by using a 100-fold excess of recombinant M-CSF. Catalase, superoxide dismutase, and the nitric oxide inhibitor, N-omega- nitro-arginine methyl ester (NAME), did not effect macrophage cytotoxicity against the mM-CSF transfectant T9 clones. T9 parental cells when cultured in the presence of an equal number of the mM-CSF transfectant cells were not killed, indicating specific target cell cytotoxicity by the macrophages. Electron microscopy showed that macrophages were capable of phagocytosizing mM-CSF bearing T9 tumor cells and NBXFO hybridoma cells; this suggested a possible mechanism of this cytotoxicity. This study indicates that mM-CSF provides the necessary binding and triggering molecules through which macrophages can initiate direct tumor cell cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document