scholarly journals In situ hybridization on May-Grunwald Giemsa-stained bone marrow and blood smears of patients with hematologic disorders allows detection of cell-lineage-specific cytogenetic abnormalities

Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 884-888 ◽  
Author(s):  
K van Lom ◽  
A Hagemeijer ◽  
EM Smit ◽  
B Lowenberg

Bone marrow and blood from patients with acute myeloid leukemia and myelodysplastic syndrome were studied by simultaneous analysis of cell morphology and karyotype. A combined technique of May-Grunwald Giemsa (MGG) for cell morphology and fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes for detection of cytogenetic aberrations allowed us to investigate cell-lineage-specific chromosomal abnormalities. We introduced video recordings to examine large numbers of cells. Briefly, evaluation was first performed on MGG slides, during which cell position and morphology were recorded on an S-VHS recorder. Subsequently, the same slides were used for FISH. This resulted in the identification of MGG-stained cells on the video screen and, at the same time, the interpretation of FISH signals in the fluorescence microscope. Specimens of bone marrow or blood samples from four patients with different hematologic malignancies were studied. One of these patients was studied before and after cytotoxic treatment. The gain or loss of chromosomes could be detected easily and morphologically assigned to the blasts in all patients and to a variable proportion of the myelomonocytic lineage in two patients, but not to the lymphocytes. Thus, this method provides new possibilities for investigating the clonality of hematologic malignancies.

Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 884-888 ◽  
Author(s):  
K van Lom ◽  
A Hagemeijer ◽  
EM Smit ◽  
B Lowenberg

Abstract Bone marrow and blood from patients with acute myeloid leukemia and myelodysplastic syndrome were studied by simultaneous analysis of cell morphology and karyotype. A combined technique of May-Grunwald Giemsa (MGG) for cell morphology and fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes for detection of cytogenetic aberrations allowed us to investigate cell-lineage-specific chromosomal abnormalities. We introduced video recordings to examine large numbers of cells. Briefly, evaluation was first performed on MGG slides, during which cell position and morphology were recorded on an S-VHS recorder. Subsequently, the same slides were used for FISH. This resulted in the identification of MGG-stained cells on the video screen and, at the same time, the interpretation of FISH signals in the fluorescence microscope. Specimens of bone marrow or blood samples from four patients with different hematologic malignancies were studied. One of these patients was studied before and after cytotoxic treatment. The gain or loss of chromosomes could be detected easily and morphologically assigned to the blasts in all patients and to a variable proportion of the myelomonocytic lineage in two patients, but not to the lymphocytes. Thus, this method provides new possibilities for investigating the clonality of hematologic malignancies.


Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1823-1828 ◽  
Author(s):  
RE Kibbelaar ◽  
H van Kamp ◽  
EJ Dreef ◽  
G de Groot-Swings ◽  
JC Kluin-Nelemans ◽  
...  

Abstract Clonality of myeloid and lymphoid cell fractions obtained from peripheral blood (PB) or bone marrow (BM) of five patients with a myelodysplastic syndrome (MDS), was studied by combined immunophenotypic analysis and DNA in situ hybridization. This novel technique enables quantitative and direct analysis of cytogenetic alterations in nondividing cells of distinct cell lineages. Four patients with a trisomy 8 and one patient with a translocation (1;7) were studied. For cell lineage determination, antibodies specific for progenitor cells (CD34), myeloid cells (CD15), monocytes (63D3), T cells (CD3), and B cells (CD19,20,22) were used. In one patient with a trisomy 8, BM cells were available and the erythroid lineage could be studied. For detection of cytogenetic aberrations, we used chromosome- specific repetitive DNA probes. In three patients, all nonlymphoid cells carried the cytogenetic abnormality; in two patients, mosaicism within these lineages was suggested by the relative low numbers (35% to 55%) of aberrant cells. None of the T or B cells of the five patients carried the chromosomal aberrations. We conclude that combined immunophenotyping and in situ hybridization is a feasible technique to study lineage involvement. Our data suggest that the chromosomal aberrations studied in MDS are restricted to the myeloid lineages.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4858-4858
Author(s):  
Jun Zhang ◽  
Yongquan Xue ◽  
Jinlan Pan ◽  
Yafang Wu ◽  
Juan Shen ◽  
...  

Abstract Abstract 4858 Objective To determining the clonal origin of dysplatic cells in Myelodysplastic syndromes (MDS) . Methods Karyotypic analyses of bone marrow cells using R-banding technique were carried out to determine the chromosomal abnormalities. Interphase fluorescence in situ hybridization (FISH) and morphologic analysis of bone marrow aspirates were performed in the same cells to investigate the clonal origin of dysplatic cells in 8 MDS patients. Result All patients had clonal karyotypic abnormalities: simple abnormality in 1 patient, complex abnormalities in 6 patients, coexistent of two unrelated clones in 1 patient. Most of dysplastic cells in 7 of 8 MDS patients derived from neoplasia clone while 1 patient had a reverse result,no matter what cell lineage was involved. Some of non-dysplastic cells of all patients derived from malignant clone; in 7 patients, the proportion of dysplastic cells in malignant clone were significantly higher than that of non- malignant clone. Conclusion Most of dysplastic cells in MDS derived from malignant clones, while the minority of them derived from non-malignant clones. Thus, it is reasonable to expect that in most cases myelodysplasia is present in malignant clone and can be taken as an important diagnostic evidence for MDS. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2456-2462
Author(s):  
J Anastasi ◽  
JW Vardiman ◽  
R Rudinsky ◽  
M Patel ◽  
J Nachman ◽  
...  

Bone marrow cells from two pediatric patients completing therapy for acute lymphoblastic leukemia were studied using in situ hybridization with an alpha-satellite DNA probe specific for chromosome 17. Morphologic analysis of the end-therapy specimens from each patient had shown small numbers (7.5%, 8.5%) of cells that were suspicious for residual or recurrent disease. These cells could not be morphologically or immunophenotypically distinguished with certainty from immature lymphoid cells (hematogones), which may be present normally, sometimes in increased numbers, in the bone marrow specimens of children. In situ hybridization with a probe to chromosome 17 was used because the leukemic cells from each patient had originally been shown to have an extra copy of this chromosome. In one patient, in situ studies showed a population of cells (106 of 1,000 cells) with three hybridization signals indicating trisomy 17, and thus residual/recurrent leukemia. In the other patient trisomy 17 could not be detected. Additional hybridizations to previously stained bone marrow aspirate smears permitted a direct correlation of the cytogenetic findings with the suspicious cells on a cell-to-cell basis. The questionable cells were identified, photographed, and then re-examined after hybridization. In one patient, 13 of 18 (72%) of the suspicious cells were found to have trisomy 17, whereas in the other patient 0 of 24 (0%) demonstrated an extra copy of this chromosome. These cases illustrate a clinical application of interphase cytogenetic analysis and demonstrate how this technology can be used for direct correlation of cytogenetic findings with cell morphology. This technique should prove useful for the detection of minimal residual disease and for lineage studies in leukemia and myelodysplasia.


Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2343-2349 ◽  
Author(s):  
DC Seong ◽  
HM Kantarjian ◽  
JY Ro ◽  
M Talpaz ◽  
J Xu ◽  
...  

Using Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML) as a model, our aim has been to develop a molecular cytogenetic method of high resolution analysis for monitoring the frequency of cells with nonrandom chromosome rearrangements in the bone marrow of patients receiving treatment for hematologic malignancies. Long-term exposure (24 hours) of bone marrow cultures to colcemid (0.1 microgram/mL) maximized a high frequency of metaphase collection. Such preparations were subjected to fluorescence in situ hybridization (FISH) using a 5 Mb probe that overlapped the region of the translocation at chromosome 9q34. This detected the Ph translocation in the resultant large number of overly contracted chromosome spreads. The procedure was validated and verified by studying 70 double-blind marrow samples from patients in different stages of Ph+ CML and from patients with Ph- hematologic malignancies (controls). This hypermetaphase FISH (HMF) method clearly identified Ph+ metaphases and allowed the analysis of 500 hypermetaphases per sample in less than 1 hour after FISH. HMF (1) identified statistically significant differences between the frequencies of Ph+ cells in samples that differed by less than 4%; (2) resolved such differences among patient samples that were all judged 100% Ph+ by standard G-band cytogenetics (CG); (3) resulted in the reclassification of response status in 23% of the patients initially classified by CG; (4) recognized Ph+ cells in 16% of patients characterized as having a complete cytogenetic response and in one patient with an original diagnosis of Ph- CML; and in one patient with an original diagnosis of Ph- CML; and (5) was informative where insufficient metaphases were obtainable for analysis by CG. HMF appears to be uniquely suitable for monitoring the status of patients with CML receiving treatment. It should also be applicable for patients with any hematologic diseases where chromosomal alterations are known and appropriate FISH probes are available.


Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1823-1828 ◽  
Author(s):  
RE Kibbelaar ◽  
H van Kamp ◽  
EJ Dreef ◽  
G de Groot-Swings ◽  
JC Kluin-Nelemans ◽  
...  

Clonality of myeloid and lymphoid cell fractions obtained from peripheral blood (PB) or bone marrow (BM) of five patients with a myelodysplastic syndrome (MDS), was studied by combined immunophenotypic analysis and DNA in situ hybridization. This novel technique enables quantitative and direct analysis of cytogenetic alterations in nondividing cells of distinct cell lineages. Four patients with a trisomy 8 and one patient with a translocation (1;7) were studied. For cell lineage determination, antibodies specific for progenitor cells (CD34), myeloid cells (CD15), monocytes (63D3), T cells (CD3), and B cells (CD19,20,22) were used. In one patient with a trisomy 8, BM cells were available and the erythroid lineage could be studied. For detection of cytogenetic aberrations, we used chromosome- specific repetitive DNA probes. In three patients, all nonlymphoid cells carried the cytogenetic abnormality; in two patients, mosaicism within these lineages was suggested by the relative low numbers (35% to 55%) of aberrant cells. None of the T or B cells of the five patients carried the chromosomal aberrations. We conclude that combined immunophenotyping and in situ hybridization is a feasible technique to study lineage involvement. Our data suggest that the chromosomal aberrations studied in MDS are restricted to the myeloid lineages.


2016 ◽  
Vol 38 (1) ◽  
pp. 40-44 ◽  
Author(s):  
R Y Lozynskyy ◽  
M R Lozynska ◽  
Y V Hontar ◽  
N L Huleyuk ◽  
Z V Maslyak ◽  
...  

The aim of the study was to improve cytogenetic diagnostics and monitoring of myelofibrosis and to reveal the spectrum of cytogenetic abnormalities in patients from Ukraine. Materials and Methods: A total of 42 patients (23 females and 19 males) with myelofibrosis was studied using different cytogenetic methods. Granulocyte colony-stimulating factor (G-CSF) was added by the new method during cultivation of peripheral blood (PB) cells from 31 patients for specific stimulation of mitotic divisions. Two patients underwent examination by fluorescent in situ hybridization method. Results: In cell cultures of PB stimulated in vitro with G-CSF and in non-stimulated bone marrow chromosome abnormalities were found in 19 (45.2%) of all the patients. The spectrum of cytogenetic abnormalities of bone marrow and PB was the same in all of the patients. Aspiration of bone marrow was unsuccessful due to significant fibrosis in 10 (29.4%) of 34 patients. The study by fluorescent in situ hybridization method confirmed cytogenetic abnormalities revealed by G-method and discovered additional possibly normal subclone. Conclusions: Cytogenetic study of PB using in vitro G-CSF as a specific stimulant of mitosis instead of phytohemagglutinin revealed significant variety of chromosomal abnormalities in Ukrainian patients with myelofibrosis. This method could be a less invasive alternative to cytogenetic examination of bone marrow in the subgroup of patients with considerable fibrosis and consecutive changes. The usage of fluorescent in situ hybridization method supplemented karyotyping by G-banding method.


Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2456-2462 ◽  
Author(s):  
J Anastasi ◽  
JW Vardiman ◽  
R Rudinsky ◽  
M Patel ◽  
J Nachman ◽  
...  

Abstract Bone marrow cells from two pediatric patients completing therapy for acute lymphoblastic leukemia were studied using in situ hybridization with an alpha-satellite DNA probe specific for chromosome 17. Morphologic analysis of the end-therapy specimens from each patient had shown small numbers (7.5%, 8.5%) of cells that were suspicious for residual or recurrent disease. These cells could not be morphologically or immunophenotypically distinguished with certainty from immature lymphoid cells (hematogones), which may be present normally, sometimes in increased numbers, in the bone marrow specimens of children. In situ hybridization with a probe to chromosome 17 was used because the leukemic cells from each patient had originally been shown to have an extra copy of this chromosome. In one patient, in situ studies showed a population of cells (106 of 1,000 cells) with three hybridization signals indicating trisomy 17, and thus residual/recurrent leukemia. In the other patient trisomy 17 could not be detected. Additional hybridizations to previously stained bone marrow aspirate smears permitted a direct correlation of the cytogenetic findings with the suspicious cells on a cell-to-cell basis. The questionable cells were identified, photographed, and then re-examined after hybridization. In one patient, 13 of 18 (72%) of the suspicious cells were found to have trisomy 17, whereas in the other patient 0 of 24 (0%) demonstrated an extra copy of this chromosome. These cases illustrate a clinical application of interphase cytogenetic analysis and demonstrate how this technology can be used for direct correlation of cytogenetic findings with cell morphology. This technique should prove useful for the detection of minimal residual disease and for lineage studies in leukemia and myelodysplasia.


Sign in / Sign up

Export Citation Format

Share Document