scholarly journals Stable multilineage hematopoietic chimerism in alpha-thalassemic mice induced by a bone marrow subpopulation that excludes the majority of day-12 spleen colony-forming units

Blood ◽  
1994 ◽  
Vol 83 (7) ◽  
pp. 1769-1777 ◽  
Author(s):  
JC van der Loo ◽  
C van den Bos ◽  
MR Baert ◽  
G Wagemaker ◽  
RE Ploemacher

Abstract We have investigated the contribution of highly purified day-12 spleen colony-forming units (CFU-S-12) as well as more primitive cells to sustained blood cell production using in vivo and in vitro assays that allow frequency analysis. Normal or day-6 post-5-fluorouracil light- density bone marrow (BM) was sorted on the basis of differences in rhodamine-123 (Rh123) retention or wheat germ agglutinin (WGA) affinity and tested in vivo using a recently developed alpha-thalassemic chimeric mouse model. In addition, short-term and long-term clonal activity was assessed in vitro using a limiting dilution-type long-term BM culture, the cobblestone area forming cell assay. When sublethally irradiated alpha-thalassemic mice were transplanted with as many as 281 purified WGAbright CFU-S-12, derived from a fraction containing 95% of all CFU-S-12 from day-6 post-5-fluorouracil light-density BM of wild- type mice, detectable chimerism was not observed at 6 months posttransplantation. In contrast, only three CFU-S-12 were included in the Rh123dull and WGAdim subpopulations that induced 29% to 58% and 21% to 31% stable multilineage donor-type chimerism of erythrocytes and leukocytes, respectively. The Rh123dull and WGAdim cells were up to 240- fold enriched for long-term repopulating ability (LTRA) as compared with unseparated BM. A comparable level of chimerism was found in the different hematopoietic organs and at the level of BM CFU-S-12. The frequency of the LTRA unit capable of inducing a 10% sustained level of donor-type erythrocytes was calculated to be 1 to 2 per 10(5) BM cells. Several reports have suggested that LTRA and spleen colony formation could be capacities of the same stem cell subset. However, the present results show that the majority of CFU-S-12 have only short-term repopulating ability and are physically separable from more primitive stem cells with long-term multilineage reconstituting capacities.

Blood ◽  
1994 ◽  
Vol 83 (7) ◽  
pp. 1769-1777 ◽  
Author(s):  
JC van der Loo ◽  
C van den Bos ◽  
MR Baert ◽  
G Wagemaker ◽  
RE Ploemacher

We have investigated the contribution of highly purified day-12 spleen colony-forming units (CFU-S-12) as well as more primitive cells to sustained blood cell production using in vivo and in vitro assays that allow frequency analysis. Normal or day-6 post-5-fluorouracil light- density bone marrow (BM) was sorted on the basis of differences in rhodamine-123 (Rh123) retention or wheat germ agglutinin (WGA) affinity and tested in vivo using a recently developed alpha-thalassemic chimeric mouse model. In addition, short-term and long-term clonal activity was assessed in vitro using a limiting dilution-type long-term BM culture, the cobblestone area forming cell assay. When sublethally irradiated alpha-thalassemic mice were transplanted with as many as 281 purified WGAbright CFU-S-12, derived from a fraction containing 95% of all CFU-S-12 from day-6 post-5-fluorouracil light-density BM of wild- type mice, detectable chimerism was not observed at 6 months posttransplantation. In contrast, only three CFU-S-12 were included in the Rh123dull and WGAdim subpopulations that induced 29% to 58% and 21% to 31% stable multilineage donor-type chimerism of erythrocytes and leukocytes, respectively. The Rh123dull and WGAdim cells were up to 240- fold enriched for long-term repopulating ability (LTRA) as compared with unseparated BM. A comparable level of chimerism was found in the different hematopoietic organs and at the level of BM CFU-S-12. The frequency of the LTRA unit capable of inducing a 10% sustained level of donor-type erythrocytes was calculated to be 1 to 2 per 10(5) BM cells. Several reports have suggested that LTRA and spleen colony formation could be capacities of the same stem cell subset. However, the present results show that the majority of CFU-S-12 have only short-term repopulating ability and are physically separable from more primitive stem cells with long-term multilineage reconstituting capacities.


Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4102-4109 ◽  
Author(s):  
CI Civin ◽  
G Almeida-Porada ◽  
MJ Lee ◽  
J Olweus ◽  
LW Terstappen ◽  
...  

Abstract Data from many laboratory and clinical investigations indicate that CD34+ cells comprise approximately 1% of human bone marrow (BM) mononuclear cells, including the progenitor cells of all the lymphohematopoietic lineages and lymphohematopoietic stem cells (stem cells). Because stem cells are an important but rare cell type in the CD34+ cell population, investigators have subdivided the CD34+ cell population to further enrich stem cells. The CD34+/CD38-cell subset comprises less than 10% of human CD34+ adult BM cells (equivalent to < 0.1% of marrow mononuclear cells), lacks lineage (lin) antigens, contains cells with in vitro replating capacity, and is predicted to be highly enriched for stem cells. The present investigation tested whether the CD34+/CD38-subset of adult human marrow generates human hematopoiesis after transfer to preimmune fetal sheep. CD34+/ CD38- cells purified from marrow using immunomagnetic microspheres or fluorescence-activated cell sorting generated easily detectable, long- term, multilineage human hematopoiesis in the human-fetal sheep in vivo model. In contrast, transfer of CD34+/CD38+ cells to preimmune fetal sheep generated only short-term human hematopoiesis, possibly suggesting that the CD34+/CD38+ cell population contains relatively early multipotent hematopoletic progenitor cells, but not stem cells. This work extends the prior in vitro evidence that the earliest cells in fetal and adult human marrow lack CD38 expression. In summary, the CD34+/ CD38-cell population has a high capacity for long-term multilineage hematopoietic engraftment, suggesting the presence of stem cells in this minor adult human marrow cell subset.


Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 952-962 ◽  
Author(s):  
JC van der Loo ◽  
WA Slieker ◽  
D Kieboom ◽  
RE Ploemacher

Monoclonal antibody ER-MP12 defines a novel antigen on murine hematopoietic stem cells. The antigen is differentially expressed by different subsets in the hematopoietic stem cell compartment and enables a physical separation of primitive long-term repopulating stem cells from more mature multilineage progenitors. When used in two-color immunofluorescence with ER-MP20 (anti-Ly-6C), six subpopulations of bone marrow (BM) cells could be identified. These subsets were isolated using magnetic and fluorescence-activated cell sorting, phenotypically analyzed, and tested in vitro for cobblestone area-forming cells (CAFC) and colony-forming units in culture (CFU-C; M/G/E/Meg/Mast). In addition, they were tested in vivo for day-12 spleen colony-forming units (CFU-S-12), and for cells with long-term repopulating ability using a recently developed alpha-thalassemic chimeric mouse model. Cells with long-term repopulation ability (LTRA) and day-12 spleen colony-forming ability appeared to be exclusively present in the two subpopulations that expressed the ER-MP12 cell surface antigen at either an intermediate or high level, but lacked the expression of Ly- 6C. The ER-MP12med20- subpopulation (comprising 30% of the BM cells, including all lymphocytes) contained 90% to 95% of the LTRA cells and immature day-28 CAFC (CAFC-28), 75% of the CFU-S-12, and very low numbers of CFU-C. In contrast, the ER-MP12hi20- population (comprising 1% to 2% of the BM cells, containing no mature cells) included 80% of the early and less primitive CAFC (CAFC-5), 25% of the CFU-S-12, and only 10% of the LTRA cells and immature CAFC-28. The ER-MP12hi cells, irrespective of the ER-MP20 antigen expression, included 80% to 90% of the CFU-C (day 4 through day 14), of which 70% were ER-MP20- and 10% to 20% ER-MP20med/hi. In addition, erythroblasts, granulocytes, lymphocytes, and monocytes could almost be fully separated on the basis of ER-MP12 and ER-MP20 antigen expression. Functionally, the presence of ER-MP12 in a long-term BM culture did not affect hematopoiesis, as was measured in the CAFC assay. Our data demonstrate that the ER-MP12 antigen is intermediately expressed on the long-term repopulating hematopoietic stem cell. Its level of expression increases on maturation towards CFU-C, to disappear from mature hematopoietic cells, except from B and T lymphocytes.


Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4102-4109 ◽  
Author(s):  
CI Civin ◽  
G Almeida-Porada ◽  
MJ Lee ◽  
J Olweus ◽  
LW Terstappen ◽  
...  

Data from many laboratory and clinical investigations indicate that CD34+ cells comprise approximately 1% of human bone marrow (BM) mononuclear cells, including the progenitor cells of all the lymphohematopoietic lineages and lymphohematopoietic stem cells (stem cells). Because stem cells are an important but rare cell type in the CD34+ cell population, investigators have subdivided the CD34+ cell population to further enrich stem cells. The CD34+/CD38-cell subset comprises less than 10% of human CD34+ adult BM cells (equivalent to < 0.1% of marrow mononuclear cells), lacks lineage (lin) antigens, contains cells with in vitro replating capacity, and is predicted to be highly enriched for stem cells. The present investigation tested whether the CD34+/CD38-subset of adult human marrow generates human hematopoiesis after transfer to preimmune fetal sheep. CD34+/ CD38- cells purified from marrow using immunomagnetic microspheres or fluorescence-activated cell sorting generated easily detectable, long- term, multilineage human hematopoiesis in the human-fetal sheep in vivo model. In contrast, transfer of CD34+/CD38+ cells to preimmune fetal sheep generated only short-term human hematopoiesis, possibly suggesting that the CD34+/CD38+ cell population contains relatively early multipotent hematopoletic progenitor cells, but not stem cells. This work extends the prior in vitro evidence that the earliest cells in fetal and adult human marrow lack CD38 expression. In summary, the CD34+/ CD38-cell population has a high capacity for long-term multilineage hematopoietic engraftment, suggesting the presence of stem cells in this minor adult human marrow cell subset.


Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1497-1504 ◽  
Author(s):  
VF Quesniaux ◽  
GJ Graham ◽  
I Pragnell ◽  
D Donaldson ◽  
SD Wolpe ◽  
...  

Abstract A macrophage-derived inhibitor of early hematopoietic progenitors (colony-forming unit-spleen, CFU-A) called stem cell inhibitor was found to be identical to macrophage inflammatory protein-1 alpha (MIP-1 alpha). We investigated the effect of MIP-1 alpha on the earliest stem cells that sustain long-term hematopoiesis in vivo in a competitive bone marrow repopulation assay. Because long-term reconstituting (LTR) stem cells are normally quiescent, an in vivo model was first developed in which they are triggered to cycle. A first 5-fluorouracil (5-FU) injection was used to eliminate later progenitors, causing the LTR stem cells, which are normally resistant to 5-FU, to enter the cell cycle and become sensitive to a second 5-FU injection administered 5 days later. Human MIP-1 alpha administered from day 0 to 7 was unable to prevent the depletion of the LTR stem cells by the second 5-FU treatment, as observed on day 7 in this model, suggesting that the LTR stem cells were not prevented from being triggered into cycle despite the MIP-1 alpha treatment. However, the MIP-1 alpha protocol used here did substantially decrease the number of more mature hematopoietic progenitors (granulocyte-macrophage colony-forming cells [CFC], burst- forming unit-erythroid, CFCmulti, and preCFCmulti) recovered in the bone marrow shortly after a single 5-FU injection. In vitro, MIP-1 alpha had no inhibitory effect on the ability of these progenitors to form colonies. This study confirms the in vivo inhibitory effect of MIP- 1 alpha on subpopulations of hematopoietic progenitors that are activated in myelodepressed animals. However, MIP-1 alpha had no effect on the long-term reconstituting stem cells in vivo under conditions in which it effectively reduced all later progenitors.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaolei Huang ◽  
Yang Xue ◽  
Jinliang Wu ◽  
Qing Zhan ◽  
Jiangmin Zhao

We aimed to identify a suitable method for long-term monitoring of the migration and proliferation of mesenchymal stromal cells in stroke models of rats using ferritin transgene expression by magnetic resonance imaging (MRI). Bone marrow mesenchymal stromal cells (BMSCs) were transduced with a lentivirus containing a shuttle plasmid (pCDH-CMV-MCS-EF1-copGFP) carrying the ferritin heavy chain 1 (Fth1) gene. Ferritin expression in stromal cells was evaluated with western blotting and immunofluorescent staining. The iron uptake of Fth1-BMSCs was measured with Prussian blue staining. Following surgical introduction of middle cerebral artery occlusion, Fth1-BMSCs and superparamagnetic iron oxide- (SPIO-) labeled BMSCs were injected through the internal jugular vein. The imaging and signal intensities were monitored by diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and susceptibility-weighted imaging (SWI) in vitro and in vivo. Pathology was performed for comparison. We observed that the MRI signal intensity of SPIO-BMSCs gradually reduced over time. Fth1-BMSCs showed the same signal intensity between 10 and 60 days. SWI showed hypointense lesions in the SPIO-BMSC (traceable for 30 d) and Fth1-BMSC groups. T2WI was not sensitive enough to trace Fth1-BMSCs. After transplantation, Prussian blue-stained cells were observed around the infarction area and in the infarction center in both transplantation models. Fth1-BMSCs transplanted for treating focal cerebral infarction were safe, reliable, and traceable by MRI. Fth1 labeling was more stable and suitable than SPIO labeling for long-term tracking. SWI was more sensitive than T2W1 and suitable as the optimal MRI-tracking sequence.


1989 ◽  
Vol 257 (2) ◽  
pp. F177-F181 ◽  
Author(s):  
C. Khadouri ◽  
S. Marsy ◽  
C. Barlet-Bas ◽  
A. Doucet

Because previous studies indicated that in the collecting tubule, N-ethylmaleimide (NEM)-sensitive ATPase, the biochemical equivalent of the proton pump, is controlled by mineralocorticoids in the long term, the present study was designed to investigate whether such control also exists in the short term. Therefore we investigated the in vivo and in vitro effects of aldosterone on the enzyme activity in cortical and outer medullary collecting tubules (CCT and MCT, respectively) from adrenalectomized rats. Administration of aldosterone (10 micrograms/kg body wt) markedly stimulated NEM-sensitive ATPase activity in the CCT and MCT within 3 h. Similarly, incubating CCT or MCT for 3 h in the presence of 10(-8) M aldosterone enhanced NEM-sensitive ATPase activity up to values similar to those previously measured in the corresponding nephron segments of normal rats. In vitro stimulation of NEM-sensitive ATPase was dose dependent in regard to aldosterone (apparent affinity constant approximately 10(-9) M), appeared after a 30-min lag period, and reached its maximum after 2-2.5 h. Finally, actinomycin D and cycloheximide totally abolished the in vitro action of aldosterone, demonstrating the involvement of protein synthesis in this process.


1992 ◽  
Vol 176 (2) ◽  
pp. 351-361 ◽  
Author(s):  
H Kodama ◽  
M Nose ◽  
Y Yamaguchi ◽  
J Tsunoda ◽  
T Suda ◽  
...  

The preadipose cell line, PA6, can support long-term hemopoiesis. Frequency of the hemopoietic stem cells capable of sustaining hemopoiesis in cocultures of bone marrow cells and PA6 cells for 6 wk was 1/5.3 x 10(4) bone marrow cells. In the group of dishes into which bone marrow cells had been inoculated at 2.5 x 10(4) cells/dish, 3 of 19 dishes (16%) contained stem cells capable of reconstituting erythropoiesis of WBB6F1-W/Wv mice, indicating that PA6 cells can support the proliferation of primitive hemopoietic stem cells. When the cocultures were treated with an antagonistic anti-c-kit monoclonal antibody, ACK2, only a small number of day 12 spleen colony-forming units survived; and hemopoiesis was severely reduced. However, when the cocultures were continued with antibody-free medium, hemopoiesis dramatically recovered. To examine the proliferative properties of the ACK2-resistant stem cells, we developed a colony assay system by modifying our coculture system. Sequential observations of the development of individual colonies and their disappearance demonstrated that the stem cells having higher proliferative capacity preferentially survive the ACK2 treatment. Furthermore, cells of subclones of the PA6 clone that were incapable of supporting long-term hemopoiesis expressed mRNA for the c-kit ligand. These results suggest that a mechanism(s) other than that involving c-kit receptor and its ligand plays an important role in the survival and proliferation of primitive hemopoietic stem cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2674-2674
Author(s):  
Seiji Fukuda ◽  
Hal E. Broxmeyer ◽  
Louis M. Pelus

Abstract The Flt3 receptor tyrosine kinase (Flt3) is expressed on primitive normal and transformed hematopoietic cells and Flt3 ligand (FL) facilitates hematopoietic stem cell mobilization in vivo. The CXC chemokine SDF-1α(CXCL12) attracts primitive hematopoietic cells to the bone marrow microenvironment while disruption of interaction between SDF-1α and its receptor CXCR4 within bone marrow may facilitate their mobilization to the peripheral circulation. We have previously shown that Flt3 ligand has chemokinetic activity and synergistically increases migration of CD34+ cells and Ba/F3-Flt3 cells to SDF-1α in short-term migration assays; this was associated with synergistic phosphorylation of MAPKp42/p44, CREB and Akt. Consistent with these findings, over-expression of constitutively active ITD (internal tandem duplication) Flt3 found in patients with AML dramatically increased migration to SDF-1α in Ba/F3 cells. Since FL can induce mobilization of hematopoietic stem cells, we examined if FL could antagonize SDF-1α/CXCR4 function and evaluated the effect of FL on in vivo homing of normal hematopoietic progenitor cells. FL synergistically increased migration of human RS4;11 acute leukemia cells, which co-express wild-type Flt3 and CXCR4, to SDF-1α in short term migration assay. Exogenous FL had no effect on SDF-1α induced migration of MV4-11 cells that express ITD-Flt3 and CXCR4 however migration to SDF-1α was partially blocked by treatment with the tyrosine kinase inhibitor AG1296, which inhibits Flt3 kinase activity. These results suggest that FL/Flt3 signaling positively regulates SDF-1α mediated chemotaxis of human acute leukemia cells in short-term assays in vitro, similar to that seen with normal CD34+ cells. In contrast to the enhancing effect of FL on SDF-1α, prolonged incubation of RS4;11 and THP-1 acute myeloid leukemia cells, which also express Flt3 and CXCR4, with FL for 48hr, significantly inhibited migration to SDF-1α, coincident with reduction of cell surface CXCR4. Similarly, prolonged exposure of CD34+ or Ba/F3-Flt3 cells to FL down-regulates CXCR4 expression, inhibits SDF-1α-mediated phosphorylation of MAPKp42/p44, CREB and Akt and impairs migration to SDF-1α. Despite reduction of surface CXCR4, CXCR4 mRNA and intracellular CXCR4 in Ba/F3-Flt3 cells were equivalent in cells incubated with or without FL, determined by RT-PCR and flow cytometry after cell permeabilization, suggesting that the reduction of cell surface CXCR4 expression is due to accelerated internalization of CXCR4. Furthermore, incubation of Ba/F3-Flt3 cells with FL for 48hr or over-expression of ITD-Flt3 in Ba/F3 cells significantly reduced adhesion to VCAM1. Consistent with the negative effect of FL on in vitro migration and adhesion to VCAM1, pretreatment of mouse bone marrow cells with 100ng/ml of FL decreased in vivo homing of CFU-GM to recipient marrow by 36±7% (P&lt;0.01), indicating that FL can negatively regulate in vivo homing of hematopoietic progenitor cells. These findings indicate that short term effect of FL can provide stimulatory signals whereas prolonged exposure has negative effects on SDF-1α/CXCR4-mediated signaling and migration and suggest that the FL/Flt3 axis regulates hematopoietic cell trafficking in vivo. Manipulation of SDF-1α/CXCR4 and FL/Flt3 interaction could be clinically useful for hematopoietic cell transplantation and for treatment of hematopoietic malignancies in which both Flt3 and CXCR4 are expressed.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 196-196
Author(s):  
Sandra Pilat ◽  
Sebastian Carotta ◽  
Bernhard Schiedlmeier ◽  
Kenji Kamino ◽  
Andreas Mairhofer ◽  
...  

Abstract In the context of somatic gene therapy of the hematopoietic system, transplantation of molecularly defined and, hence, “safe” clones would be highly desirable. However, techniques which allow gene targeting, subsequent in vitro selection and clonal expansion are only available for embryonic stem (ES) cells. After in vitro differentiation, some of their progeny cells are capable of mediating long term hematopoietic repopulation after transplantation into immunodeficient recipient mice, in vivo. This is especially efficient when the homeodomain transcription factor HOXB4 is ectopically expressed (1). We have recently shown that HOXB4-ES-cell derivatives behave similar to bone marrow cells also expressing this transcription factor ectopically, both in vitro and in vivo (2). Here we demonstrate that long term repopulation (>6 months) in Rag2(−/−)γ C(−/−) mice can be achieved with ES-cell derived hematopoietic cells (ES-HCs) obtained from single, molecularly characterized ES-clones, in which the insertion sites of the retroviral expression vector had been defined. Clones expressing HOXB4 above a certain level showed a high extent of chimerism in the bone marrow of transplanted mice (average 75%; range 45–95%, n=4) whereas ES-HC clones expressing lower levels only repopulated with very low efficiency (average 2.5% chimerism, range 1–4%, n=6 mice). These results suggest that the capability of long-term repopulation, in vivo, is highly dependent on the expression levels of HOXB4 in the transplanted clones. Only mice reconstituted with ES-HC clones expressing high amounts of HOXB4 and thus showing substantial chimerism, recapitulated the morphohistological phenotype observed in polyclonally reconstituted mice. This included the bias towards myelopoiesis, “benign” myeloid proliferation in spleen and the incompatibility of HOXB4 expression with T-cell poiesis (2). In summary, we demonstrate that repopulation of the hematopoietic system can be achieved with preselected clones of genetically manipulated stem cells in which a) the insertion site of the retroviral (gene therapy) vector has been characterized prior to transplantation and b) in which ectopic HOXB4 has to be expressed above a certain threshold level. Thus, ES cells carry the potential for performing safe somatic gene therapy when using integrating gene therapy vectors. Nevertheless, advanced cell therapy will certainly require the expression of HOXB4 in a regulated manner to avoid unwanted effects such as disturbed lineage differentiation.


Sign in / Sign up

Export Citation Format

Share Document