scholarly journals The cDNA and derived amino acid sequence of porcine factor VIII

Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4209-4214 ◽  
Author(s):  
JF Healey ◽  
IM Lubin ◽  
P Lollar

The cDNA corresponding to 137 bp of the 5′ untranslated region, the signal peptide, and the A1, A3, C1, and C2 domains of porcine factor VIII (fVIII) have been cloned and sequenced. Along with previously determined sequences of the porcine fVIII B domain and the A2 domain, this completes the sequence determination of the cDNA corresponding to the translated protein. Alignments of the derived amino acid sequence of porcine fVIII with human and murine fVIII indicate that the A1, A2, A3, C1, and C2 domains are more conserved than the B domains or the proteolytic cleavage peptides corresponding to residues 337–372 and 1649–1689. The knowledge of the porcine fVIII cDNA may be useful to understand functional and immunological differences between human and porcine fVIII and may lead to improved fVIII replacement products for hemophilia. A patients through the development of recombinant porcine fVIII or hybrid human/porcine fVIII derivatives.

Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4209-4214 ◽  
Author(s):  
JF Healey ◽  
IM Lubin ◽  
P Lollar

Abstract The cDNA corresponding to 137 bp of the 5′ untranslated region, the signal peptide, and the A1, A3, C1, and C2 domains of porcine factor VIII (fVIII) have been cloned and sequenced. Along with previously determined sequences of the porcine fVIII B domain and the A2 domain, this completes the sequence determination of the cDNA corresponding to the translated protein. Alignments of the derived amino acid sequence of porcine fVIII with human and murine fVIII indicate that the A1, A2, A3, C1, and C2 domains are more conserved than the B domains or the proteolytic cleavage peptides corresponding to residues 337–372 and 1649–1689. The knowledge of the porcine fVIII cDNA may be useful to understand functional and immunological differences between human and porcine fVIII and may lead to improved fVIII replacement products for hemophilia. A patients through the development of recombinant porcine fVIII or hybrid human/porcine fVIII derivatives.


1990 ◽  
Vol 9 (8) ◽  
pp. 781-786 ◽  
Author(s):  
David L. Cooper ◽  
Edward W. Baptist ◽  
Jan Enghild ◽  
Howard Lee ◽  
Narayana Isola ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5477-5477
Author(s):  
Kerry L. Titus ◽  
Paul Lee ◽  
H. Trent Spencer ◽  
Christopher Doering

Abstract A major obstacle for gene therapy of hemophilia A is the achievement of adequate factor VIII (fVIII) expression. Bioengineering strategies have targeted specific sequences within human fVIII that are thought to be responsible for its generally poor expression. Specific amino acid substitutions, L303E/F309S herein referred to as double mutation (DM), function to decrease fVIII binding to BiP, a resident ER chaperone, which results in increased fVIII secretion (Swaroop, Moussalli et al. 1997). Furthermore, addition of 6 N-linked glycosylation sites, designated 226/N6, located within the human B domain also increases human fVIII expression (Miao, Sirachainan et al. 2004). We previously demonstrated that porcine and certain hybrid human/porcine fVIII constructs are expressed at 10 – 14-fold greater levels than human fVIII (Doering, Healey et al. 2002; Doering, Healey et al. 2004). The aim of the current study was to directly compare various fVIII expression constructs in order to determine an optimal transgene for gene therapy applications. The following fVIII constructs were generated: human B-domain-deleted fVIII (HBDD-fVIII), HBDD-fVIII with a 14 amino acid linker between the A2 domain and the activation peptide (HSQ-fVIII), porcine fVIII containing a 24 amino acid linker (HEP-fVIII), hybrid human/porcine-fVIII which has porcine A1 and A3 domains (HP47), and modified HBDD, HSQ and HEP-fVIII constructs containing DM and/or 226/N6. Each construct was transiently transfected into BHK-M cells, and fVIII production between 48 – 72 hrs post-transfection was measured using a one-stage clotting assay. Under these conditions, the addition of the DM and 226/N6 significantly increased fVIII expression for HBDD (P = 0.003), though not for HSQ. Addition of DM or 226/N6 alone did not significantly increase the expression of either human fVIII construct, and furthermore, the addition of DM to HEP-fVIII decreased its expression 98%. HEP-fVIII was expressed at 8-fold or greater levels than any of the other human constructs. Next, ~25 stably transfected BHK-M clones were isolated following transfection with each of the fVIII expression constructs and the rate of fVIII production for each clone was determined. Several clones did not express detectable fVIII activity (<0.01 units/mL) and were excluded from the analysis. Approximately 14% of the total number of clones were excluded, ranging from 0 – 42% for the different constructs. HEP-DM-fVIII was the exception, where 82% of the clones had activity <0.01 units/mL. Mean HEP-fVIII expression was 3.93 ± 3.22 units/mL/24 hr (n = 19) (Figure 1), and HP47 was similarly expressed at 3.21 ± 2.31 units/mL/24 hr (n = 19). All of the HSQ-based constructs and HBDD-DM/226/N6 showed similar mean expression levels (0.28 ± 0.03 units/mL/24 hr) and were significantly higher than HBDD and HBDD-DM, which had a mean of 0.12 ± 0.01 units/mL. In the current study, we provide experimental evidence that the expression of HEP-fVIII and HP47 is superior to other bioengineered fVIII expression constructs, which should eliminate the expression barrier that has hampered the clinical translation of gene therapy for hemophilia A. Figure 1: Stable Transfectants Figure 1:. Stable Transfectants


FEBS Letters ◽  
1992 ◽  
Vol 297 (3) ◽  
pp. 297-301 ◽  
Author(s):  
William Burkhart ◽  
Gardiner F.H. Smith ◽  
Jui-Lan Su ◽  
Indu Parikh ◽  
Harry LeVine

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3764-3764 ◽  
Author(s):  
Wei Wei ◽  
Xiaofan Zhu ◽  
Renchi Yang ◽  
Bin Zhang

Abstract Most secreted proteins are glycosylated on the asparagine (N) residue with the consensus sequence N-X-S/T(X≠Proline).Coagulation factor VIII (FVIII) is heavily N-linked glycosylated with 5 consensus sites outside the B domain. However, the roles of these glycans are not well understood. Meanwhile, missense mutations which could create additional N-linked glycosylation sites have largely not been characterized in hemophilia A patients. In this study we first expressed individual domains of FVIII and determined that the A2, Cand C2 domains are efficiently secreted. The A1(N42,N239), A3 (N1810)and C1 (N2118)domains are glycosylated, whereas N582 in the A2 domain is not glycosylated. Only one hemophilia A missense mutation, S241C in the A1 domain, was found to abolish the consensus sequence for N-linked glycosylation at N239. We confirmed that the S241C mutant lost one glycan and became unstable inside cells. We also tested the other three glycosylation sites and found that elimination of the N-linked glycan at N2118 (N2118Q mutation) impaired the secretion of the C domain. This defect could not be rescued by adding another N-linked glycan (at N2062) in the C1 domain, indicating that the N2118 glycan is specifically required for the secretion of the C domain. We next searched the CHAMP F8 Mutation Database and the FVIII Variant Database and identified 19 missense mutations that potentially create an ectopic glycosylation site.These mutations are located in A1, A2, A3 and C1 domains, but none in the C2 domain. Only two mutations (I566T and M1772T) have previously been characterized.We found that all but one (I2071T) of these mutations gained an additional N-linked glycan. We further studied missense mutations in the A2 (A469T, A469S, I566T, M614T and G701S) and the C domain (W2062S, I2071T and D2131N) because these domains are secreted in cell culture. Whereas secretion of I566T, W2062S and D2131N mutants was comparable to their wild-type counterparts, secretion of other mutants decreased to 5%-30% of WT (P<0.05). Mutants that secreted into culture media nevertheless have low FVIII activity (<2%), indicating that these mutations cause cross reactive material positive hemophilia A. The consequences of additional N-linked glycan were further investigated using the A2 domain mutants, since this domain is normally unglycosylated. After treating with tunicamycin to block the N-linked glycosylation process in the endoplasmic reticulum (ER),the secretion of A2 domain with I566T andG701Smutants, which had relatively high secretion levels, decreased significantly. On the other hand, removing the additional glycan boosted the secretion of A469S and A469T, two low-secretion mutants.Tunicamycin treatment had no effect on another low secretion mutant,M614T.These results suggest that amino acid substitution in I566T andG701Smutationsis detrimental to the proper folding of the protein and the additional N-glycan plays a stabilization role. On the other hand, additional N-glycan plays a destabilization role in A469S and A469T mutations, contributing to disruption of folding in these mutants. For theM614Tmutation,the amino acid substitution alone is likely sufficient todestroy the protein folding. We also studied interactions of abnormally glycosylated mutants with ER chaperones.All the mutants with low secretion levels significantly induced expression of GRP78 to 1.5-2.0 folds(P<0.05), while mutants that maintain higher secretion levels did not affect GRP78 expression. The low secretion mutants also had increased binding to GRP78 and calreticulin, but not to calnexin.Therefore ER chaperones play a key role in the ER quality control of FVIII mutants. In conclusion, our results indicate that the effects of abnormal N-linked glycosylation on FVIII folding and secretionvary widely, from detrimental to beneficial. The impact of a particular glycan is likely determined by the location and the underlying amino acid change caused by the mutation. Disclosures No relevant conflicts of interest to declare.


1981 ◽  
Vol 90 (6) ◽  
pp. 1833-1836 ◽  
Author(s):  
Yukio IKEHARA ◽  
Kimimitsu ODA ◽  
Melvin G. ROSENFELD ◽  
Shoshana BAR-NUN ◽  
Gert KREIBICH

1987 ◽  
Author(s):  
Richard J Jenny ◽  
Debra D Pittman ◽  
John J Toole ◽  
Ronald W Kriz ◽  
Randal J Kaufman ◽  
...  

cDNA clones encoding human factor V have been isolated and sequenced. The cDNA sequence of factor V obtained from overlapping clones includes a 6672 bp coding region, a 90 bp 5'-untranslated region and a 163 bp 3’-untranslated region including a poly-A tail. The deduced amino acid sequence consists of 2224 amino acids including a 28 amino acid leader peptide. A direct comparison to human factor VIII reveals considerable homology between both proteins with respect to amino acid sequence and domain structure. A triplicated "A" domain and duplicated "C" domain show an approximate 40% identity to the corresponding domains in factor VIII. Factor V and Factor VIII both possess a heavily glycosylated B domain that separates the heavy and light chains of the activated cofactors, although no significant homology is observed in this region. The B domain of factor V contains 35 tandem and approximately 9 additional semi - conserved repeats of nine amino acids of the form (D-L-S-Q-T-T-L-S-P) and 2 additional semi-conserved repeats of 17 amino acids. Factor V contains 37 potential N-linked glycosylation sites, 25 of which are in the B domain, and a total of 19 cysteine residues. By direct comparison to amino acid sequence obtained from both human and bovine factor V, the thrombin (IIa) cleavage sites have been assigned as Arg-709/Ser-710, Arg-1018/Thr-1019, and Are-1545/Ser-1546.(Supported by NIH Grant HL-34575)


Sign in / Sign up

Export Citation Format

Share Document