scholarly journals HBED: A Potential Alternative to Deferoxamine for Iron-Chelating Therapy

Blood ◽  
1998 ◽  
Vol 91 (4) ◽  
pp. 1446-1452 ◽  
Author(s):  
Raymond J. Bergeron ◽  
Jan Wiegand ◽  
Gary M. Brittenham

Abstract To examine the potential clinical usefulness of the hexadentate phenolic aminocarboxylate iron chelatorN,N-bis(2-hydroxybenzyl)ethylenediamine-N,N-diacetic acid (HBED) for the chronic treatment of transfusional iron overload, we compared the iron excretion induced by subcutaneous (SC) injection of HBED and deferoxamine (DFO), the reference chelator, in rodents and primates. In the non–iron-overloaded, bile-duct–cannulated rat, a single SC injection of HBED, 150 μmol/kg, resulted in a net iron excretion that was more than threefold greater than that after the same dose of DFO. In the iron-loaded Cebus apella monkey, a single SC injection of HBED, 150 μmol/kg, produced a net iron excretion that was more than twice that observed after the same dose of SC DFO. In patients with transfusional iron overload, SC injections of HBED may provide a much needed alternative to the use of prolonged parenteral infusions of DFO.

Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 370-375
Author(s):  
Raymond J. Bergeron ◽  
Jan Wiegand ◽  
Gary M. Brittenham

To further examine the potential clinical usefulness of the hexadentate phenolic aminocarboxylate iron chelatorN,N′-bis(2-hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED) for the chronic treatment of transfusional iron overload, we performed a subchronic toxicity study of the HBED monosodium salt in rodents and have evaluated the iron excretion in primates induced by HBED. The HBED-induced iron excretion was determined for the monohydrochloride dihydrate that was first dissolved in a 0.1-mmol/L sodium phosphate buffer at pH 7.6 and administered to the primates either orally (PO) at a dose of 324 μmol/kg (149.3 mg/kg, n = 5), subcutaneously (sc) at a dose of 81 μmol/kg (37.3 mg/kg, n = 5), sc at 324 μmol/kg (n = 5), and sc at 162 μmol/kg (74.7 mg/kg) for 2 consecutive days for a total dose of 324 μmol/kg (n = 3). In addition, the monosodium salt of HBED in saline was administered to the monkeys sc at a single dose of 150 μmol/kg (64.9 mg/kg, n = 5) or at a dose of 75 μmol/kg every other day for three doses, for a total dose of 225 μmol/kg (n = 4). For comparative purposes, we have also administered deferoxamine (DFO) PO and sc in aqueous solution at a dose of 300 μmol/kg (200 mg/kg). In the iron-loadedCebus apella monkey, whereas the PO administration of DFO or HBED even at a dose of 300 to 324 μmol/kg was ineffective, the sc injection of HBED in buffer or its monosodium salt, 75 to 324 μmol/kg, produced a net iron excretion that was nearly three times that observed after similar doses of sc DFO. In patients with transfusional iron overload, sc injections of HBED may provide a much needed alternative to the use of prolonged parenteral infusions of DFO.  Note: After the publication of our previous paper (Blood, 91:1446, 1998) and the completion of the studies described here, it was discovered that the HBED obtained from Strem Chemical Co (Newburyport, MA) that was labeled and sold as a dihydrochloride dihydrate was in fact the monohydrochloride dihydrate. Therefore, the actual administered doses were 81, 162, or 324 μmol/kg; not 75, 150, or 300 μmol/kg as was previously reported. The new data have been recalculated accordingly, and the data from our earlier study, corrected where applicable, are shown in parentheses.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 370-375 ◽  
Author(s):  
Raymond J. Bergeron ◽  
Jan Wiegand ◽  
Gary M. Brittenham

Abstract To further examine the potential clinical usefulness of the hexadentate phenolic aminocarboxylate iron chelatorN,N′-bis(2-hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED) for the chronic treatment of transfusional iron overload, we performed a subchronic toxicity study of the HBED monosodium salt in rodents and have evaluated the iron excretion in primates induced by HBED. The HBED-induced iron excretion was determined for the monohydrochloride dihydrate that was first dissolved in a 0.1-mmol/L sodium phosphate buffer at pH 7.6 and administered to the primates either orally (PO) at a dose of 324 μmol/kg (149.3 mg/kg, n = 5), subcutaneously (sc) at a dose of 81 μmol/kg (37.3 mg/kg, n = 5), sc at 324 μmol/kg (n = 5), and sc at 162 μmol/kg (74.7 mg/kg) for 2 consecutive days for a total dose of 324 μmol/kg (n = 3). In addition, the monosodium salt of HBED in saline was administered to the monkeys sc at a single dose of 150 μmol/kg (64.9 mg/kg, n = 5) or at a dose of 75 μmol/kg every other day for three doses, for a total dose of 225 μmol/kg (n = 4). For comparative purposes, we have also administered deferoxamine (DFO) PO and sc in aqueous solution at a dose of 300 μmol/kg (200 mg/kg). In the iron-loadedCebus apella monkey, whereas the PO administration of DFO or HBED even at a dose of 300 to 324 μmol/kg was ineffective, the sc injection of HBED in buffer or its monosodium salt, 75 to 324 μmol/kg, produced a net iron excretion that was nearly three times that observed after similar doses of sc DFO. In patients with transfusional iron overload, sc injections of HBED may provide a much needed alternative to the use of prolonged parenteral infusions of DFO.  Note: After the publication of our previous paper (Blood, 91:1446, 1998) and the completion of the studies described here, it was discovered that the HBED obtained from Strem Chemical Co (Newburyport, MA) that was labeled and sold as a dihydrochloride dihydrate was in fact the monohydrochloride dihydrate. Therefore, the actual administered doses were 81, 162, or 324 μmol/kg; not 75, 150, or 300 μmol/kg as was previously reported. The new data have been recalculated accordingly, and the data from our earlier study, corrected where applicable, are shown in parentheses.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 3019-3026 ◽  
Author(s):  
Raymond J. Bergeron ◽  
Jan Wiegand ◽  
Gary M. Brittenham

Abstract We have continued the preclinical evaluation of the efficacy and safety of the hexadentate phenolic aminocarboxylate iron chelatorN, N′-bis(2-hydroxybenzyl) ethylenediamine-N, N′-diacetic acid monosodium salt (NaHBED) for the treatment of both chronic transfusional iron overload and acute iron poisoning. We examined the effect of route of administration by giving equimolar amounts of NaHBED and deferoxamine (DFO) to Cebus apella monkeys as either a subcutaneous (SC) bolus or a 20-minute intravenous (IV) infusion. By both routes, NaHBED was consistently about twice as efficient as DFO in producing iron excretion. For both chelators at a dose of 150 μmol/kg, SC was more efficient than IV administration. The biochemical and histopathologic effects of NaHBED administration were assessed. No systemic toxicity was found after either IV administration once daily for 14 days to iron-loaded dogs or after SC administration every other day for 14 days to dogs without iron overload. Evidence of local irritation was found at some SC injection sites. When the NaHBED concentration was reduced to 15% or less in a volume comparable to a clinically useful one, no local irritation was found with SC administration in rats. Because treatment of acute iron poisoning may require rapid chelator infusion, we compared the effects of IV bolus administration of the compounds to normotensive rats. Administration of DFO produced a prompt, prolonged drop in blood pressure and acceleration of heart rate; NaHBED had little effect. NaHBED may provide an alternative to DFO for the treatment of both chronic transfusional iron overload and of acute iron poisoning.


2007 ◽  
Vol 65 (5) ◽  
pp. AB230
Author(s):  
Shunsuke Komoto ◽  
Atsushi Kawaguchi ◽  
Chikako Watanabe ◽  
Ryota Hokari ◽  
Hisayuki Matsunaga ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1858-1858
Author(s):  
Konstantinos Sarantos ◽  
Patricia Evans ◽  
Maciej Garbowski ◽  
Bernard Davis ◽  
John B Porter

Abstract Background: Under conditions of iron overload, ascorbic acid is oxidised at an increased rate leading to a risk of vitamin C deficiency. With deferoxamine (DFO) standard therapy, vitamin C is usually given at a dose of 2–3mg/kg on the days of DFO infusion as this increases iron excretion by up to 30%. With deferarisox (DFX) chelation treatment, although supplementation is permitted, there is currently no information about the effects of vitamin C supplementation on iron excretion and it is often left to patients or their clinician’s discretion as to whether supplementation is given. With long-term treatment, in the absence of supplementation there is a potential risk that vitamin C deficiency will develop and this could influence response to treatment. Patients and Methods: We have measured fasting plasma vitamin C in 41 patients who have been on long term deferasirox treatment for transfusional iron overload for between 1.5 and 5 years. 32 of these patients had received no supplementation and 9 patients had received 2–3 mg/kg/ day of supplementation. We have examined whether trends in serum ferritin, myocardial T2* and liver iron, during the final year of observation, relate to plasma levels of vitamin C. Results: Fasting plasma Vitamin C was significantly lower in the 41 patients (mean=30.3μmol/l, SD=20.8) than healthy control patients (mean=60.29μmol/l SD=12.6) (P<0.0001). Fasting vitamin C levels were significantly lower in patients without supplementation (mean=26.1μmol/l, n=32) (p=0.011) than in patients who received regular supplementation (mean=45.5μmol/l, n=9). In the 32 patients without supplementation 23 (72%) had plasma levels less than two standard deviations from the control mean. Fasting vitamin C levels after a minimum of 1 year treatment without vitamin C supplementation negatively correlated with liver iron concentration as estimated by T2* MRI. One patient, who was subsequently found to have the lowest fating vitamin c level (2.9μmol/l) developed clinical signs consistent with scurvy with severe gum disease requiring dental clearance. We found no difference in the change of ferritin trend, LIC decrease or cT2* trend in the patients receiving supplementation from those who did not. We found that the correlation between LIC and serum ferritin was less clear in deficient patients (<36μmol/l or 2SD from the mean, r=0.51, p<0.01) than replete patients (>36μmol/l) (r=0.88, p<0.0001). Conclusions: We conclude that with long-term deferasirox therapy without vitamin C supplementation, there is a significant risk of vitamin C deficiency with a potential for clinical scurvy. The risk of ascorbate deficiency is further increased at higher levels of body iron loading. These findings suggest that vitamin C supplementation (2–3mg/kg/day) should be recommended as standard for patients on long-term chelation therapy with deferasirox. It would also be of value to determine whether long term-response was improved by ascorbate supplementation.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2776-2779 ◽  
Author(s):  
Massimo Franchini ◽  
Giorgio Gandini ◽  
Marzia de Gironcoli ◽  
Aurora Vassanelli ◽  
Caterina Borgna-Pignatti ◽  
...  

We compared 48-hour urinary iron excretion after a twice-daily subcutaneous bolus injection of deferoxamine and after 12 hours of subcutaneous continuous infusion of the drug in 27 patients with iron overload (mean age, 55.7 years). In most patients, the iron overload was due to multiple transfusions administered during chemotherapy or as part of supportive care for a hematologic or oncologic disorder. One patient had sickle cell anemia and 1 had hereditary hemochromatosis and spherocytosis. Similar urinary iron excretion was observed with the 2 methods of administration; mean ± SD values were 6935.3 ± 3832.3 μg/48 hours with subcutaneous bolus injection and 6630.4 ± 3606.9 μg/48 hours with subcutaneous continuous infusion (P = .3). Twenty-six patients (96.3%) chose to continue therapy with bolus injection. The long-term efficacy of bolus injection was evaluated by measuring the serum ferritin concentration at regular intervals for a follow-up time of 20.1 ± 4.5 months. Ferritin concentration decreased to below 1000 μg/L in 73% of the patients and to below 500 μg/L in 42% and became normal in 26%. Best results were obtained in patients who were no longer receiving blood transfusions when chelation therapy was initiated. Three of 26 patients (11.5%) had mild, transient side effects after bolus injection. Larger prospective, randomized studies must be conducted before deferoxamine bolus injection can be routinely recommended for patients with iron overload.


2009 ◽  
Vol 44 (12) ◽  
pp. 793-797 ◽  
Author(s):  
J W Lee ◽  
H J Kang ◽  
E K Kim ◽  
H Kim ◽  
H Y Shin ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Asrul Akmal Shafie ◽  
Irwinder Kaur Chhabra ◽  
Jacqueline Hui Yi Wong ◽  
Noor Syahireen Mohammed

Abstract Purpose There is a gap of information describing the health state utility values (HSUVs) of transfusion-dependent thalassemia (TDT) patients in Malaysia. These values are useful in the assessment of health-related quality of life (HRQoL), economic evaluations and provide guidance to disease management decisions. The objective of this study was to estimate and derive HSUVs associated with the treatment and complications of TDT patients in Malaysia using the EQ-5D-3L instrument. Methods A cross-sectional survey using the EQ-5D-3L instrument was conducted between May to September 2018 across various public hospitals in Malaysia. Using a multi-stage sampling, patients diagnosed with TDT and receiving iron chelating therapy were sampled. The findings on the EQ-5D-3L survey were converted into utility values using local tariff values. A two-part model was used to examine and derive the HSUVs associated with the treatment and complications of iron overload in TDT. Results A total of 585 patients were surveyed. The unadjusted mean (SD) EQ-5D-3L utility value for TDT patients were 0.893 (0.167) while mean (SD) EQ VAS score was 81.22 (16.92). Patients who had more than two iron overload complications had a significant decline in HRQoL. Patients who were on oral monotherapy had a higher utility value of 0.9180 compared to other regimen combinations. Conclusion Lower EQ-5D-3L utility values were associated with patients who developed iron overload complications and were on multiple iron chelating agents. Emphasizing compliance to iron chelating therapy to prevent the development of complications is crucial in the effort to preserve the HRQoL of TDT patients.


Sign in / Sign up

Export Citation Format

Share Document