Macrophage Lineage Cells in Inflammation: Characterization by Colony-Stimulating Factor-1 (CSF-1) Receptor (c-Fms), ER-MP58, and ER-MP20 (Ly-6C) Expression

Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1423-1431 ◽  
Author(s):  
James Chan ◽  
Pieter J.M. Leenen ◽  
Ivan Bertoncello ◽  
Shin-Ichi Nishikawa ◽  
John A. Hamilton

Abstract Macrophage populations resident in tissues and at sites of inflammation are heterogeneous and with local proliferation sometimes evident. Using the convenient murine peritoneal cavity as an inflammation model, the appearance of macrophage lineage cells was followed with time in both thioglycollate- and sodium periodate-induced exudates. The cells were characterized by their proliferative response in vitro in response to colony-stimulating factor-1 (CSF-1) (or macrophage colony-stimulating factor [M-CSF]), particularly by their ability to form colonies in agar, in combination with flow cytometry (surface marker expression and forward and side scatter characteristics). We propose that c-Fms (CSF-1 receptor), unlike other markers, is a uniformly expressed and specific marker suitable for the detection of macrophage-lineage cells in tissues, both in the steady state and after the initiation of an inflammatory reaction. It was shown that the bone marrow myeloid precursor markers, ER-MP58 and ER-MP20 (Ly-6C), but not ER-MP12 (PECAM-1), are expressed by a high proportion of macrophage-lineage cells in the inflamed peritoneum. The macrophage colony-forming cells (M-CFCs) in a 16-hour thioglycollate-induced exudate were phenotyped as c-Fms+ERMP12−20+58+, properties consistent with their being more mature than bone marrow M-CFCs. It is proposed that ER-MP58, as well as ER-MP20, may be a useful marker for distinguishing inflammatory macrophage-lineage cells from the majority of those residing normally in tissues. © 1998 by The American Society of Hematology.

Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1423-1431
Author(s):  
James Chan ◽  
Pieter J.M. Leenen ◽  
Ivan Bertoncello ◽  
Shin-Ichi Nishikawa ◽  
John A. Hamilton

Macrophage populations resident in tissues and at sites of inflammation are heterogeneous and with local proliferation sometimes evident. Using the convenient murine peritoneal cavity as an inflammation model, the appearance of macrophage lineage cells was followed with time in both thioglycollate- and sodium periodate-induced exudates. The cells were characterized by their proliferative response in vitro in response to colony-stimulating factor-1 (CSF-1) (or macrophage colony-stimulating factor [M-CSF]), particularly by their ability to form colonies in agar, in combination with flow cytometry (surface marker expression and forward and side scatter characteristics). We propose that c-Fms (CSF-1 receptor), unlike other markers, is a uniformly expressed and specific marker suitable for the detection of macrophage-lineage cells in tissues, both in the steady state and after the initiation of an inflammatory reaction. It was shown that the bone marrow myeloid precursor markers, ER-MP58 and ER-MP20 (Ly-6C), but not ER-MP12 (PECAM-1), are expressed by a high proportion of macrophage-lineage cells in the inflamed peritoneum. The macrophage colony-forming cells (M-CFCs) in a 16-hour thioglycollate-induced exudate were phenotyped as c-Fms+ERMP12−20+58+, properties consistent with their being more mature than bone marrow M-CFCs. It is proposed that ER-MP58, as well as ER-MP20, may be a useful marker for distinguishing inflammatory macrophage-lineage cells from the majority of those residing normally in tissues. © 1998 by The American Society of Hematology.


Endocrinology ◽  
2011 ◽  
Vol 152 (5) ◽  
pp. 1911-1922 ◽  
Author(s):  
Hasnawati Saleh ◽  
Damien Eeles ◽  
Jason M. Hodge ◽  
Geoffrey C. Nicholson ◽  
Ran Gu ◽  
...  

IL-33 is an important inflammatory mediator in allergy, asthma, and joint inflammation, acting via its receptor, ST2L, to elicit Th2 cell cytokine secretion. IL-33 is related to IL-1 and IL-18, which both influence bone metabolism, IL-18 in particular inhibiting osteoclast formation and contributing to PTH bone anabolic actions. We found IL-33 immunostaining in osteoblasts in mouse bone and IL-33 mRNA expression in cultured calvarial osteoblasts, which was elevated by treatment with the bone anabolic factors oncostatin M and PTH. IL-33 treatment strongly inhibited osteoclast formation in bone marrow and spleen cell cultures but had no effect on osteoclast formation in receptor activator of nuclear factor-κB ligand/macrophage colony-stimulating factor-treated bone marrow macrophage (BMM) or RAW264.7 cultures, suggesting a lack of direct action on immature osteoclast progenitors. However, osteoclast formation from BMM was inhibited by IL-33 in the presence of osteoblasts, T cells, or mature macrophages, suggesting these cell types may mediate some actions of IL-33. In bone marrow cultures, IL-33 induced mRNA expression of granulocyte macrophage colony-stimulating factor, IL-4, IL-13, and IL-10; osteoclast inhibitory actions of IL-33 were rescued only by combined antibody ablation of these factors. In contrast to osteoclasts, IL-33 promoted matrix mineral deposition by long-term ascorbate treated primary osteoblasts and reduced sclerostin mRNA levels in such cultures after 6 and 24 h of treatment; sclerostin mRNA was also suppressed in IL-33-treated calvarial organ cultures. In summary, IL-33 stimulates osteoblastic function in vitro but inhibits osteoclast formation through at least three separate mechanisms. Autocrine and paracrine actions of osteoblast IL-33 may thus influence bone metabolism.


1987 ◽  
Vol 166 (6) ◽  
pp. 1851-1860 ◽  
Author(s):  
D Caracciolo ◽  
N Shirsat ◽  
G G Wong ◽  
B Lange ◽  
S Clark ◽  
...  

Human macrophage colony-stimulating factor (M-CSF or CSF-1), either in purified or in recombinant form, is able to generate macrophagic colonies in a murine bone marrow colony assay, but only stimulates small macrophagic colonies of 40-50 cells in a human bone marrow colony assay. We report here that recombinant human granulocytic/macrophage colony stimulating factor (rhGM-CSF) at concentrations in the range of picograms enhances the responsiveness of bone marrow progenitors to M-CSF activity, resulting in an increased number of macrophagic colonies of up to 300 cells. Polyclonal antiserum against M-CSF did not alter colony formation of bone marrow progenitors incubated with GM-CSF at optimal concentration (1-10 ng/ml) for these in vitro assays. Thus, GM-CSF at higher concentrations (nanogram range) can by itself, elicit macrophagic colonies, and at lower concentrations (picogram range) acts to enhance the responsiveness of these progenitors to M-CSF.


Blood ◽  
1993 ◽  
Vol 81 (4) ◽  
pp. 942-949 ◽  
Author(s):  
CE Carow ◽  
G Hangoc ◽  
HE Broxmeyer

The replating capability of human umbilical cord blood (CB) multipotential (CFU-GEMM) progenitors was assessed in vitro as an estimate of self-renewal using erythropoietin (Epo), steel factor (SLF), and either fetal bovine serum (FBS) or CB plasma. This study found a much higher replating efficiency for CB CFU-GEMM than previously reported, in terms of the percentage of colonies that could be replated, the number of secondary colonies per replated primary colony, and the size of secondary colonies. Moreover, the majority of secondary colonies were CFU-GEMM-derived. Although the percentages of bone marrow CFU-GEMM that replate was similar to that for CB CFU-GEMM and the sizes of secondary bone marrow and CB CFU-GEMM were also similar, replated CB CFU-GEMM gave rise to far greater numbers of secondary colonies. No tertiary colonies were observed when secondary CFU-GEMM were replated. Detection of extensive secondary replating potential was enhanced by the addition of CB plasma to the cultures. This activity was not found in either adult blood (PB) plasma, umbilical cord vein endothelial cell-conditioned medium (ECCM), FBS plus ECCM, or FBS plus the combination of interleukin-1 (IL-1), IL-3, IL-6, IL-11, granulocyte colony-stimulating factor, and granulocyte- macrophage colony-stimulating factor. Whether the CB plasma-enhancing activity for CFU-GEMM replating capacity is attributable to a novel factor or factors, or represents effects of other known cytokines, alone or in combination, remains to be determined. Of particular relevance, these studies suggest that human CFU-GEMM have some degree of stemness and perhaps should be classified as a subset of stem cells.


Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1473-1480
Author(s):  
AM Vannucchi ◽  
A Grossi ◽  
D Rafanelli ◽  
PR Ferrini

Murine recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) was injected in mice, and the effects on bone marrow, splenic megakaryocytes, megakaryocyte precursors (megakaryocyte colony-forming units [CFU-Meg]) were evaluated. In mice injected three times a day for 6 days with 12,000 to 120,000 U rGM-CSF, no significant modification of both platelet levels and mean platelet volume was observed, while there was a twofold increase in blood neutrophils. However, the rate of platelet production, as assessed by the measurement of 75selenomethionine incorporation into blood platelets, was On the contrary, administration of up to 384,000 U rGM-CSF two times a day for 2 days, as for a typical “thrombopoietin assay,” failed to modify platelet production. A significant dose-related increase in the number of splenic megakaryocytes occurred in mice receiving 60,000 to 120,000 U rGM-CSF, while a slight increase in the number of bone marrow megakaryocytes was observed in mice injected with 120,000 U rGM-CSF. The proportion of bone marrow megakaryocytes with a size less than 18 microns and greater than 35 microns resulted significantly higher in mice receiving rGM-CSF in comparison with controls; an increase in the percentage of splenic megakaryocytes greater than 35 microns was also observed. A statistically significant increase in the total spleen content of CFU-Meg was observed after administration of 90,000 and 120,000 U rGM-CSF three times a day for 6 days, while no effect on bone marrow CFU-Meg was recorded, irrespective of the dose delivered. Finally, 24 hours after a single intravenous injection of rGM-CSF, there was a significant increase in the proportion of CFU-Meg in S- phase, with the splenic progenitors being more sensitive than bone marrow-derived CFU-Meg. These data indicate that rGM-CSF has in vivo megakaryocyte stimulatory activity, and are consistent with previous in vitro observations. However, an effective stimulation of megakaryocytopoiesis in vivo, bringing about an increase in the levels of blood platelets, may require interaction of rGM-CSF with other cytokines.


Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 68-73 ◽  
Author(s):  
RK Shadduck ◽  
A Waheed ◽  
EJ Wing

Abstract Several previous studies suggested that murine macrophage colony- stimulating factor (CSF-1) might have impaired access to hematopoietic cells in the marrow. The apparent lack of hematopoietic responses to exogenous CSF and the finding of available or unoccupied CSF receptors despite saturating CSF levels in the serum led to studies of a potential blood-bone marrow barrier for this factor. Groups of mice were injected with pure unlabeled CSF-1 by either intravenous (IV) or intraperitoneal (IP) routes. Marrow and spleen cells were obtained at intervals after injection, held at 0 degree C, and assessed for changes in binding of 125I-CSF. Saturation of all available CSF receptors is achieved in vitro with 100 to 150 U CSF/mL. Despite achieving serum levels of 5,000 to 7,000 U/mL after IV injection of 25,000 units of CSF, less than 50% of the marrow receptors and less than 85% of the splenic receptors were saturated or downregulated. The decline in receptor availability was transient, with return of receptor sites in two to four hours. Increasing the IV dose to 125,000 units increased serum CSF values to approximately 20,000 U/mL and led to a virtual disappearance of available receptors for two to three hours. When administered IP, only approximately 40% of marrow and 80% of splenic receptors were affected for two hours. It was necessary to increase the dose of CSF to 250,000 units IP to saturate or downregulate receptors for three to four hours after injection. These observations indicate a marked blood-bone marrow barrier and lesser blood-spleen barrier for the transfer of serum CSF to responsive hematopoietic cells in vivo.


Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 68-73
Author(s):  
RK Shadduck ◽  
A Waheed ◽  
EJ Wing

Several previous studies suggested that murine macrophage colony- stimulating factor (CSF-1) might have impaired access to hematopoietic cells in the marrow. The apparent lack of hematopoietic responses to exogenous CSF and the finding of available or unoccupied CSF receptors despite saturating CSF levels in the serum led to studies of a potential blood-bone marrow barrier for this factor. Groups of mice were injected with pure unlabeled CSF-1 by either intravenous (IV) or intraperitoneal (IP) routes. Marrow and spleen cells were obtained at intervals after injection, held at 0 degree C, and assessed for changes in binding of 125I-CSF. Saturation of all available CSF receptors is achieved in vitro with 100 to 150 U CSF/mL. Despite achieving serum levels of 5,000 to 7,000 U/mL after IV injection of 25,000 units of CSF, less than 50% of the marrow receptors and less than 85% of the splenic receptors were saturated or downregulated. The decline in receptor availability was transient, with return of receptor sites in two to four hours. Increasing the IV dose to 125,000 units increased serum CSF values to approximately 20,000 U/mL and led to a virtual disappearance of available receptors for two to three hours. When administered IP, only approximately 40% of marrow and 80% of splenic receptors were affected for two hours. It was necessary to increase the dose of CSF to 250,000 units IP to saturate or downregulate receptors for three to four hours after injection. These observations indicate a marked blood-bone marrow barrier and lesser blood-spleen barrier for the transfer of serum CSF to responsive hematopoietic cells in vivo.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3474-3479 ◽  
Author(s):  
BS Charak ◽  
R Agah ◽  
A Mazumder

Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been reported to induce antitumor activity in peripheral blood monocytes. We examined the role of GM-CSF on bone marrow (BM) macrophages in inducing antibody-dependent cellular cytotoxicity (ADCC) against murine and human tumor cells in vitro and in vivo with the aim of applying this approach in an autologous bone marrow transplantation (BMT) setting. GM- CSF induced a potent ADCC in BM macrophages against a murine melanoma in vitro. Treatment with GM-CSF alone or with antibody alone had no effect, whereas therapy with combination of both these agents resulted in a significant reduction in dissemination of melanoma both in a nontransplant as well as in BMT settings, with results being more optimal in the latter setting. Adoptive transfer of BM macrophages harvested from mice undergoing therapy with GM-CSF plus antibody significantly reduced the dissemination of melanoma in secondary recipients but only after irradiation, not in intact mice. GM-CSF also induced significant ADCC in human BM macrophages against a melanoma and a lymphoma in vitro and against a lymphoma implanted in nude mice in vivo. Again, these effects were more optimal after chemotherapy. These data suggest that treatment with GM-CSF plus tumor-specific monoclonal antibodies after BMT may induce an antitumor effect and help eradicate the minimal residual disease.


Blood ◽  
1993 ◽  
Vol 81 (4) ◽  
pp. 942-949 ◽  
Author(s):  
CE Carow ◽  
G Hangoc ◽  
HE Broxmeyer

Abstract The replating capability of human umbilical cord blood (CB) multipotential (CFU-GEMM) progenitors was assessed in vitro as an estimate of self-renewal using erythropoietin (Epo), steel factor (SLF), and either fetal bovine serum (FBS) or CB plasma. This study found a much higher replating efficiency for CB CFU-GEMM than previously reported, in terms of the percentage of colonies that could be replated, the number of secondary colonies per replated primary colony, and the size of secondary colonies. Moreover, the majority of secondary colonies were CFU-GEMM-derived. Although the percentages of bone marrow CFU-GEMM that replate was similar to that for CB CFU-GEMM and the sizes of secondary bone marrow and CB CFU-GEMM were also similar, replated CB CFU-GEMM gave rise to far greater numbers of secondary colonies. No tertiary colonies were observed when secondary CFU-GEMM were replated. Detection of extensive secondary replating potential was enhanced by the addition of CB plasma to the cultures. This activity was not found in either adult blood (PB) plasma, umbilical cord vein endothelial cell-conditioned medium (ECCM), FBS plus ECCM, or FBS plus the combination of interleukin-1 (IL-1), IL-3, IL-6, IL-11, granulocyte colony-stimulating factor, and granulocyte- macrophage colony-stimulating factor. Whether the CB plasma-enhancing activity for CFU-GEMM replating capacity is attributable to a novel factor or factors, or represents effects of other known cytokines, alone or in combination, remains to be determined. Of particular relevance, these studies suggest that human CFU-GEMM have some degree of stemness and perhaps should be classified as a subset of stem cells.


Sign in / Sign up

Export Citation Format

Share Document