mineral deposition
Recently Published Documents


TOTAL DOCUMENTS

285
(FIVE YEARS 73)

H-INDEX

40
(FIVE YEARS 4)

Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 61
Author(s):  
Sarah Geahchan ◽  
Parnian Baharlouei ◽  
Muhammed Azizur Rahman

Marine organisms harbor numerous bioactive substances that can be utilized in the pharmaceutical and cosmetic industries. Scientific research on various applications of collagen extracted from these organisms has become increasingly prevalent. Marine collagen can be used as a biomaterial because it is water soluble, metabolically compatible, and highly accessible. Upon review of the literature, it is evident that marine collagen is a versatile compound capable of healing skin injuries of varying severity, as well as delaying the natural human aging process. From in vitro to in vivo experiments, collagen has demonstrated its ability to invoke keratinocyte and fibroblast migration as well as vascularization of the skin. Additionally, marine collagen and derivatives have proven beneficial and useful for both osteoporosis and osteoarthritis prevention and treatment. Other bone-related diseases may also be targeted by collagen, as it is capable of increasing bone mineral density, mineral deposition, and importantly, osteoblast maturation and proliferation. In this review, we demonstrate the advantages of marine collagen over land animal sources and the biomedical applications of marine collagen related to bone and skin damage. Finally, some limitations of marine collagen are briefly discussed.


2021 ◽  
Author(s):  
Zhaoyi Joey Dai ◽  
Amy Kan ◽  
Yi-Tsung Alex Lu ◽  
Cianna Leschied ◽  
Yue Zhao ◽  
...  

Abstract Mineral scale formation causes billions of dollars’ loss every year due to production losses and facility damages in the oil and gas industry. Accurate predictions of when, where, how much, and how fast scale will deposit in the production system and how much scale inhibitor is needed are critical for scale management. Unfortunately, there is not a sophisticated scale deposition model available, potentially due to the challenges below. First, an accurate thermodynamic model is not widely available to predict scale potential at extensive ranges of temperature, pressure, and brine compositions occurring in the oilfield. Second, due to the complex oilfield operation conditions with large variations of water, oil and gas flow rates, tubing size, surface roughness, etc., wide ranges of flow patterns and regimes can occur in the field and need to be covered in the deposition model. Third, how scale inhibitors impact the mineral deposition process is not fully understood. The objective of this study is to overcome these challenges and develop a model to predict mineral deposition at different flow conditions with or without scale inhibitors. Specifically, after decades of efforts, our group has developed one of the most accurate and widely used thermodynamic model, which was adopted in this new deposition model to predict scale potential up to 250 °C, 1,500 bars, and 6 mol/kg H2O ionic strength. In addition, the mass transfer coefficients were simulated from laminar (Re < 2300) to turbulent (Re > 3,100) flow regimes, as well as the transitional flow regimes (2300 < Re < 3,100) which occur occasionally in the oilfield using sophisticated flow dynamics models. More importantly, the new deposition model also incorporates the impacts of scale inhibitors on scale deposition which was tested and quantified with Langmuir-type kink site adsorption isotherm. The minimum inhibitor dosage required can be predicted at required protection time or maximum deposition thickness rate. This model also includes the impacts of entry-region flow regime in laminar flow, surface roughness, and laminar sublayer stability under turbulent flow. The new mineral scale deposition model was validated by our laminar tubing flow deposition experiments for barite and calcite with or without scale inhibitors and laminar-to-turbulent flow experiments in literature. The good match between experimental result and model predictions show the validity of our new model. This new mineral scale deposition model is the first sophisticated model available in the oil and gas industry that can predict mineral scale deposition in the complex oilfield conditions with and without scale inhibitors. This new mineral scale deposition model will be a useful and practical tool for oilfield scale control.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Bárbara M. de Sousa ◽  
Clara R. Correia ◽  
Jorge A. F. Ferreira ◽  
João F. Mano ◽  
Edward P. Furlani ◽  
...  

AbstractReplacement orthopedic surgeries are among the most common surgeries worldwide, but clinically used passive implants cannot prevent failure rates and inherent revision arthroplasties. Optimized non-instrumented implants, resorting to preclinically tested bioactive coatings, improve initial osseointegration but lack long-term personalized actuation on the bone–implant interface. Novel bioelectronic devices comprising biophysical stimulators and sensing systems are thus emerging, aiming for long-term control of peri-implant bone growth through biointerface monitoring. These acting-sensing dual systems require high frequency (HF) operations able to stimulate osteoinduction/osteoconduction, including matrix maturation and mineralization. A sensing-compatible capacitive stimulator of thin interdigitated electrodes and delivering an electrical 60 kHz HF stimulation, 30 min/day, is here shown to promote osteoconduction in pre-osteoblasts and osteoinduction in human adipose-derived mesenchymal stem cells (hASCs). HF stimulation through this capacitive interdigitated system had significant effects on osteoblasts’ collagen-I synthesis, matrix, and mineral deposition. A proteomic analysis of microvesicles released from electrically-stimulated osteoblasts revealed regulation of osteodifferentiation and mineralization-related proteins (e.g. Tgfb3, Ttyh3, Itih1, Aldh1a1). Proteomics data are available via ProteomeXchange with the identifier PXD028551. Further, under HF stimulation, hASCs exhibited higher osteogenic commitment and enhanced hydroxyapatite deposition. These promising osteoinductive/conductive capacitive stimulators will integrate novel bioelectronic implants able to monitor the bone–implant interface and deliver personalized stimulation to peri-implant tissues.


2021 ◽  
Vol 12 (5) ◽  
pp. 7012-7022

The study of magnesium (Mg) based biomaterials has emerged as a potential research area in recent times. Controlling the rapid corrosion and improving the implant-tissue interface kinetics for better tissue regeneration are the prime interests behind developing novel Mg-based composites. In the current work, the metal matrix composites of Mg-Zn, dispersed with nano-hydroxyapatite derived from fish bones (fHA), were produced by powder metallurgy route. The powders were mixed with the help of ball milling in the presence of ethanol and then sintered at 440 °C. From the microstructural studies, micro-lamellar morphology was noticed for the sintered compacts due to the flake-like morphology of the milled powders. The sintered compacts were then subjected to in vitro biodegradation studies in simulated conditions for one week. From the results, the presence of fHA was found to be highly influential in increasing the rate of mineral deposition on the surface of the composites. These higher mineral depositions protected the surface of the composites from further degradation. The results demonstrate that adding fHA to Mg accelerates biomineralization and controls degradation, leading to better implant-tissue interactions.


2021 ◽  
Author(s):  
◽  
Anthony Barry Christie

<p>Tertiary epithermal Au-Ag-Pb-Zn-Cu vein, and porphyry copper deposits occur in the Hauraki Province. The epithermal deposits were extensively mined for gold and silver in the late 1800's, and early 1900's and produced approximately 300 million grams (10 million ounces) of gold and 1,000 million grams (30 million ounces) of silver. They occur in Jurassic greywacke suite rocks, lower Miocene-Pliocene andesites and dacites, and upper Miocene-Pleistocene rhyolites although the deposits in the and esites and dacites produced most of the gold and silver mined. Base metal assemblages of the epithermal deposits are dominated by pyrite, sphalerite, galena and chalcopyrite, whereas acanthite and native gold (electrum) are the most common precious metal minerals. Tellurides (e.g. hessite) and seleniferous - selenide minerals are locally important. Gangue minerals are mainly quartz and calcite. Near neutral or slightly alkaline fluid pH is indicated for the epithermal fluids by the occurrence of sericite and/or adularia in wall rock alteration mineral assemblages. Acidic fluids, forming kaolinite, are characteristic of late stages or near surface environments. Fluid inclusion filling temperatures, and sulphur isotope temperatures from sphalerite-galena pairs, indicate that base metal deposition occurred mainly between 320 and. 280 degrees C, precious metal assemblages predominantly in the range of 280 - 200 degrees C and late stage barite, in some deposits, generally below 200 degrees C. There is fluid inclusion evidence for boiling during mineralisation in some deposits. Apparent salinities of the epithermal fluids, determined from fluid inclusion freezing temperatures, range from 0 - 6.1 eq. wt. % NaCl. No consistent difference in average apparent salinity was recognised between the different types of epithermal deposits, although the highest recorded values were from the base metal deposits. The absence of liquid CO2 in fluid inclusions limits the maximum possible concentration of CO2 to approximately 3 mole %. Extraction and measurement of CO2, from some samples indicates an average concentration of approximately 1 mole %. Corrections for dissolved CO2 required to transform apparent salinities to true salinities indicate that CO2 is the major solute in low salinity inclusions and that its concentration varied widely during mineral deposition in most deposits. Thermodynamic models of the geochemical environments of mineral deposition indicate that the large gold-silver deposits were formed by solutions in which sulphur occurred predominantly in reduced form, whereas many other deposits formed from solutions with approximately equal concentrations of oxidised and reduced aqueous sulphur species. Mineral deposition resulted from several different processes including: changes in fluid pH accompanying reactions with the wall rocks, mixing with other types of fluids, boiling, and variations in the concentration of CO2 in solution. These various processes acted separately in different parts of the hydrothermal system and general deposited characteristic mineral assemblages. Deuterium/hydrogen ratios of water extracted from fluid inclusions indicate that most hydrothermal fluids were originally meteoric water. Sulphur isotope ratios of sulphide and sulphate minerals, in association with the thermodynamic relations of the mineral assemblages, indicate that the sulphur was derived from at least two different sources; sedimentary sulphate and magmatic SO2, the relative importance of each varying from one deposit to another. Two types of hydrothermal systems are postulated for the formation of the epithermal deposits. During andesitic volcanism in the Miocene-early Pliocene, hydrothermal fluid convective cells were generated by heat from near surface small intrusive bodies of magma, whereas during rhyolitic volcanism in the late Miocene-Pleistocene the heat sources were larger plutons at greater depth. Porphyry copper deposits are associated with quartz diorite stocks intruded into Jurassic greywacke suite rocks and Miocene andesites. They are "diorite" model hypabyssal and volcanic types. The major minerals are quartz, pyrite, chalcopyrite and sphalerite. Additional minerals differ between the different deposits and define two contrasting geochemical environments of deposition, one characterised by low fS2, fO2 and Sigma S, indicated by the presence of pyrrhotite, and the other of moderate to high fS2, fO2 and Sigma S, indicated by the occurrence of bornite, magnetite or hematite. Associated hydrothermal alteration is generally propylitic although limited phyllic and "potassic" (defined by secondary biotite) types also occur in some deposits. Fluid inclusion and sulphur isotope studies of the Miners Head. porphyry copper deposit suggest that copper mineralisation occurred at a temperature of approximately 425 degrees C from fluids with apparent salinities up to.15.5 eq. wt. % NaCl and containing sulphur of magmatic origin, predominantly as H2S.</p>


2021 ◽  
Author(s):  
◽  
Anthony Barry Christie

<p>Tertiary epithermal Au-Ag-Pb-Zn-Cu vein, and porphyry copper deposits occur in the Hauraki Province. The epithermal deposits were extensively mined for gold and silver in the late 1800's, and early 1900's and produced approximately 300 million grams (10 million ounces) of gold and 1,000 million grams (30 million ounces) of silver. They occur in Jurassic greywacke suite rocks, lower Miocene-Pliocene andesites and dacites, and upper Miocene-Pleistocene rhyolites although the deposits in the and esites and dacites produced most of the gold and silver mined. Base metal assemblages of the epithermal deposits are dominated by pyrite, sphalerite, galena and chalcopyrite, whereas acanthite and native gold (electrum) are the most common precious metal minerals. Tellurides (e.g. hessite) and seleniferous - selenide minerals are locally important. Gangue minerals are mainly quartz and calcite. Near neutral or slightly alkaline fluid pH is indicated for the epithermal fluids by the occurrence of sericite and/or adularia in wall rock alteration mineral assemblages. Acidic fluids, forming kaolinite, are characteristic of late stages or near surface environments. Fluid inclusion filling temperatures, and sulphur isotope temperatures from sphalerite-galena pairs, indicate that base metal deposition occurred mainly between 320 and. 280 degrees C, precious metal assemblages predominantly in the range of 280 - 200 degrees C and late stage barite, in some deposits, generally below 200 degrees C. There is fluid inclusion evidence for boiling during mineralisation in some deposits. Apparent salinities of the epithermal fluids, determined from fluid inclusion freezing temperatures, range from 0 - 6.1 eq. wt. % NaCl. No consistent difference in average apparent salinity was recognised between the different types of epithermal deposits, although the highest recorded values were from the base metal deposits. The absence of liquid CO2 in fluid inclusions limits the maximum possible concentration of CO2 to approximately 3 mole %. Extraction and measurement of CO2, from some samples indicates an average concentration of approximately 1 mole %. Corrections for dissolved CO2 required to transform apparent salinities to true salinities indicate that CO2 is the major solute in low salinity inclusions and that its concentration varied widely during mineral deposition in most deposits. Thermodynamic models of the geochemical environments of mineral deposition indicate that the large gold-silver deposits were formed by solutions in which sulphur occurred predominantly in reduced form, whereas many other deposits formed from solutions with approximately equal concentrations of oxidised and reduced aqueous sulphur species. Mineral deposition resulted from several different processes including: changes in fluid pH accompanying reactions with the wall rocks, mixing with other types of fluids, boiling, and variations in the concentration of CO2 in solution. These various processes acted separately in different parts of the hydrothermal system and general deposited characteristic mineral assemblages. Deuterium/hydrogen ratios of water extracted from fluid inclusions indicate that most hydrothermal fluids were originally meteoric water. Sulphur isotope ratios of sulphide and sulphate minerals, in association with the thermodynamic relations of the mineral assemblages, indicate that the sulphur was derived from at least two different sources; sedimentary sulphate and magmatic SO2, the relative importance of each varying from one deposit to another. Two types of hydrothermal systems are postulated for the formation of the epithermal deposits. During andesitic volcanism in the Miocene-early Pliocene, hydrothermal fluid convective cells were generated by heat from near surface small intrusive bodies of magma, whereas during rhyolitic volcanism in the late Miocene-Pleistocene the heat sources were larger plutons at greater depth. Porphyry copper deposits are associated with quartz diorite stocks intruded into Jurassic greywacke suite rocks and Miocene andesites. They are "diorite" model hypabyssal and volcanic types. The major minerals are quartz, pyrite, chalcopyrite and sphalerite. Additional minerals differ between the different deposits and define two contrasting geochemical environments of deposition, one characterised by low fS2, fO2 and Sigma S, indicated by the presence of pyrrhotite, and the other of moderate to high fS2, fO2 and Sigma S, indicated by the occurrence of bornite, magnetite or hematite. Associated hydrothermal alteration is generally propylitic although limited phyllic and "potassic" (defined by secondary biotite) types also occur in some deposits. Fluid inclusion and sulphur isotope studies of the Miners Head. porphyry copper deposit suggest that copper mineralisation occurred at a temperature of approximately 425 degrees C from fluids with apparent salinities up to.15.5 eq. wt. % NaCl and containing sulphur of magmatic origin, predominantly as H2S.</p>


2021 ◽  
Author(s):  
Sana Ansari ◽  
Keita Ito ◽  
Sandra Hofmann

Fetal bovine serum (FBS) is a widely used supplement in cell culture medium, despite its known variability in composition which greatly affects cellular function and consequently the outcome of studies. In bone tissue engineering, the deposited mineralized matrix is one of the main outcome parameters, but using different brands of FBS can result in large variations. Alkaline phosphatase (ALP) is present in FBS. Not only is ALP used to judge the osteogenic differentiation of bone cells, it may affect deposition of mineralized matrix. The present study focused on the enzymatic activity of ALP in FBS of different suppliers and its contribution to mineralization in osteogenic differentiation cultures. It was hypothesized that culturing cells in a medium with high intrinsic ALP activity of FBS will lead to higher mineral deposition compared to media with lower ALP activity. The used FBS types were shown to have significant differences in enzymatic ALP activity. Our results indicate that the ALP activity of the medium not only affected the deposited mineralized matrix but also the osteogenic differentiation of cells as measured by a changed cellular ALP activity of human bone marrow derived mesenchymal stromal cells (hBMSC). In media with low inherent ALP activity, the cellular ALP activity was increased and played the major role in the mineralization process; while, in media with high intrinsic ALP activity contribution from the serum, less cellular ALP activity was measured and the ALP activity of the medium also contributed to mineral formation substantially. Our results highlight the diverse effects of ALP activity intrinsic to FBS on osteogenic differentiation and matrix mineralization and how FBS can determine the experimental outcomes, in particular for studies investigating matrix mineralization. Once again, the need to replace FBS with more controlled and known additives is highlighted.


2021 ◽  
pp. 1-45
Author(s):  
Oluwaseun S. Ogungbemi ◽  
John O. Amigun ◽  
Gbenga M. Olayanju ◽  
Ganiyu Badmus

Integrated airborne and ground geophysical studies were conducted in parts of Ilesha schist belt, southwestern Nigeria. The goal was to provide a useful guide for mineral prospecting, with the hope of considerably narrowing down the future search for mineral deposits within the study area. Aeromagnetic and aeroradiometric data were analyzed for the reconnaissance study. In addition, the reduction-to-equator transform, analytic signal, tilt derivative, and Euler deconvolution filters were applied to the aeromagnetic data to enhance shallow and deep geologic features. The aeroradiometric data were used to determine spatial variations in the concentrations of uranium (U), thorium (Th), and potassium (K) in near-surface rocks and to map spatial lithologic changes. The 2D-magnetic sections, radiometric profiles, inverted resistivity, and induced polarization (IP) sections were generated from the integrated geophysical data. The electrical resistivity tomography (ERT) results reveal the subsurface heterogeneity (to a depth of approximately 197 m) and varied geoelectric layers (topsoil, lateritic-clay, weathered rock, and basement rock). The IP sections show varying degrees of chargeability and features that suggest the presence of disseminated mineralized bodies concealed in some areas. The overburden thickness varies between 4 and 85 m as determined from the 2D-magnetic and electric resistivity sections. Anomalous peaks on profiles of elemental ratios (eTh/K, eTh/eU, and K/eU) correlate with the results of IP and ERT. Data sets are well correlated and highlight areas with relevant structural and lithologic signatures favorable for mineral deposition. The methodology adopted in our research is well adapted, and the interpretation techniques provided insight into regional and local lithostructural settings. These anomalous areas are suggested as targets for future exploration works.


Sign in / Sign up

Export Citation Format

Share Document