Treatment of intractable autoimmune diseases in MRL/lpr mice using a new strategy for allogeneic bone marrow transplantation

Blood ◽  
2000 ◽  
Vol 95 (5) ◽  
pp. 1862-1868 ◽  
Author(s):  
Taketoshi Kushida ◽  
Muneo Inaba ◽  
Kenji Takeuchi ◽  
Kikuya Sugiura ◽  
Ryokei Ogawa ◽  
...  

A new bone marrow transplantation (BMT) method for treating severe autoimmune diseases in chimeric resistant MRL/lpr mice is presented. The method consists of fractionated irradiation (5.5 Gy × 2), followed by portal venous (PV) injection of whole bone marrow cells (BMCs) from allogeneic normal C57BL/6 (B6) mice and intravenous (IV) injection of whole B6 BMCs 5 days after the PV injection (abbreviated as 5.5 Gy × 2 + PV + IV). All recipients survived more than 1 year after this treatment (more than 64 weeks after birth). Abnormal T cells (Thy1.2+/B220+/CD3+/CD4−/CD8−) present in MRL/lpr mice before the treatment disappear, and hematolymphoid cells are reconstituted with donor-derived cells. The treated mice are free from autoimmune diseases. Levels of autoantibodies (IgG/IgM anti-ssDNA antibodies and IgG/IgM rheumatoid factors) decrease to normal levels. Successful cooperation is achieved among T cells, B cells, and antigen-presenting cells (APCs) of the treated MRL/lpr mice when evaluated by in vitro anti-SRBC responses. Newly developed T cells are tolerant to both donor (B6)-type and host (MRL/lpr)-type major histocompatibility complex (MHC) determinants. These findings clearly indicate that severe autoimmune diseases in MRL/lpr mice are completely ameliorated by the treatment without recourse to immunosuppressants, and that the treated MRL/lpr mice show normal immune functions, strongly suggesting that this strategy would be applicable to humans.

Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 873-885 ◽  
Author(s):  
Margot Zöller ◽  
Annette Schmidt ◽  
Angela Denzel ◽  
Jürgen Moll

Abstract Constitutive expression of a rat CD44 variant isoform, rCD44v4-v7, on murine T cells accelerates immune responsiveness. Because prolonged immunodeficiency can be a major drawback in allogeneic bone marrow transplantation, we considered it of special interest to see whether repopulation of lethally irradiated syngeneic and allogeneic mice may be influenced by constitutive expression of the rCD44v4-v7 transgene. When lethally irradiated syngeneic and allogeneic mice were reconstituted with bone marrow cells (BMC) from rCD44v4-v7 transgenic (TG) or nontransgenic (NTG) mice, the former had a clear repopulation advantage: thymocytes expanded earlier after reconstitution and, as a consequence, higher numbers of lymphocytes were recovered from spleen and lymph nodes. Lymphocytes also displayed functional activity in advance to those from mice reconstituted with BMC from NTG mice. Most importantly, after the transfer of BMC from TG mice into an allogeneic host, the frequency of host-reactive T cells decreased rapidly. Apparently, this was due to accelerated induction of tolerance. Because these effects were counterregulated by an rCD44v6-specific antibody, it is likely that they could be attributed to the rCD44v4-v7 TG product. Thus, expression of a CD44 variant isoform at high levels facilitated reconstitution with allogeneic BMC by accelerated establishment of tolerance and the regaining of immunocompetence.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 873-885
Author(s):  
Margot Zöller ◽  
Annette Schmidt ◽  
Angela Denzel ◽  
Jürgen Moll

Constitutive expression of a rat CD44 variant isoform, rCD44v4-v7, on murine T cells accelerates immune responsiveness. Because prolonged immunodeficiency can be a major drawback in allogeneic bone marrow transplantation, we considered it of special interest to see whether repopulation of lethally irradiated syngeneic and allogeneic mice may be influenced by constitutive expression of the rCD44v4-v7 transgene. When lethally irradiated syngeneic and allogeneic mice were reconstituted with bone marrow cells (BMC) from rCD44v4-v7 transgenic (TG) or nontransgenic (NTG) mice, the former had a clear repopulation advantage: thymocytes expanded earlier after reconstitution and, as a consequence, higher numbers of lymphocytes were recovered from spleen and lymph nodes. Lymphocytes also displayed functional activity in advance to those from mice reconstituted with BMC from NTG mice. Most importantly, after the transfer of BMC from TG mice into an allogeneic host, the frequency of host-reactive T cells decreased rapidly. Apparently, this was due to accelerated induction of tolerance. Because these effects were counterregulated by an rCD44v6-specific antibody, it is likely that they could be attributed to the rCD44v4-v7 TG product. Thus, expression of a CD44 variant isoform at high levels facilitated reconstitution with allogeneic BMC by accelerated establishment of tolerance and the regaining of immunocompetence.


Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 144-150 ◽  
Author(s):  
KF Mangan ◽  
MT Mullaney ◽  
CS Rosenfeld ◽  
RK Shadduck

Abstract In vitro coculture studies were performed in five patients with severe aplastic anemia (SAA) and their normal HLA-matched donors before and after allogeneic bone marrow transplantation (BMT) to determine whether the erythropoietic function of T cells is abnormal in this disorder. These coculture studies used fresh or cryopreserved marrow T lymphocytes with fresh or cryopreserved marrow T cell-depleted target cells. Four of five aplastic patients had little or no transfusion exposure before studies. The composite results showed that, in comparison to the erythropoietic effects of normal HLA-identical marrow T lymphocytes or engrafted T lymphocytes, T lymphocytes collected from the aplastic patients before BMT consistently suppressed or failed to support CFUE and BFUE growth optimally from autologous marrow, HLA- identical marrow, or engrafted aplastic T cell-depleted marrows. This T cell abnormality was not observed in four multiply transfused leukemics and three patients with myelodysplastic syndrome. Marker analyses of SAA marrow T lymphocytes performed before and after BMT suggested that the erythropoietic functional abnormality was due to abnormal marrow T cell composition reflecting an excess of activated Tac+, T3+, T11+ lymphocytes. Collectively, these in vitro studies provide firmer in vitro evidence implicating T cells in the pathogenesis of SAA. The erythropoietic T cells abnormalities in SAA are fully corrected by allogeneic BMT.


Blood ◽  
2002 ◽  
Vol 100 (9) ◽  
pp. 3429-3431 ◽  
Author(s):  
Pavan Reddy ◽  
Takanori Teshima ◽  
Gerhard Hildebrandt ◽  
Ulrich Duffner ◽  
Yoshinobu Maeda ◽  
...  

Abstract We have recently shown that early administration of interleukin 18 (IL-18) after bone marrow transplantation (BMT) attenuates acute graft-versus-host disease (GVHD) in a lethally irradiated parent into F1 (B6→B6D2F1) BMT model. In this study, we investigated whether IL-18 can maintain graft-versus-leukemia (GVL) effect in this context. B6D2F1 mice received transplants of T-cell–depleted (TCD) bone marrow (BM) and splenic T cells from either syngeneic (H2b/d) or allogeneic B6 (H2b) donors. Recipient mice were treated with recombinant murine IL-18 or the control diluent. Initial studies demonstrated that IL-18 treatment did not affect the proliferative responses or the cytolytic effector functions of T cells after BMT. In subsequent experiments, animals also received host-type P815 mastocytoma cells at the time of BMT. All syngeneic BM transplant recipients died from leukemia by day 18. The allogeneic BM transplant recipients effectively rejected their leukemia regardless of treatment and IL-18 significantly reduced GVHD-related mortality. Examination of the cytotoxic mechanisms with perforin-deficient donor T cells demonstrated that perforin is critical for the GVL effect. Taken together these data demonstrate that IL-18 can attenuate acute GVHD without impairing the in vitro cytolytic function or the in vivo GVL activity after allogeneic BMT.


Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 144-150
Author(s):  
KF Mangan ◽  
MT Mullaney ◽  
CS Rosenfeld ◽  
RK Shadduck

In vitro coculture studies were performed in five patients with severe aplastic anemia (SAA) and their normal HLA-matched donors before and after allogeneic bone marrow transplantation (BMT) to determine whether the erythropoietic function of T cells is abnormal in this disorder. These coculture studies used fresh or cryopreserved marrow T lymphocytes with fresh or cryopreserved marrow T cell-depleted target cells. Four of five aplastic patients had little or no transfusion exposure before studies. The composite results showed that, in comparison to the erythropoietic effects of normal HLA-identical marrow T lymphocytes or engrafted T lymphocytes, T lymphocytes collected from the aplastic patients before BMT consistently suppressed or failed to support CFUE and BFUE growth optimally from autologous marrow, HLA- identical marrow, or engrafted aplastic T cell-depleted marrows. This T cell abnormality was not observed in four multiply transfused leukemics and three patients with myelodysplastic syndrome. Marker analyses of SAA marrow T lymphocytes performed before and after BMT suggested that the erythropoietic functional abnormality was due to abnormal marrow T cell composition reflecting an excess of activated Tac+, T3+, T11+ lymphocytes. Collectively, these in vitro studies provide firmer in vitro evidence implicating T cells in the pathogenesis of SAA. The erythropoietic T cells abnormalities in SAA are fully corrected by allogeneic BMT.


Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2109-2114
Author(s):  
G Pichert ◽  
EP Alyea ◽  
RJ Soiffer ◽  
DC Roy ◽  
J Ritz

Previous studies have shown that tumor-specific bcr-abl mRNA can often be detected by polymerase chain reaction. (PCR) for months to years after allogeneic bone marrow transplantation (BMT) for chronic myelocytic leukemia (CML). Nevertheless, the presence of bcr-abl mRNA by itself does not invariably predict for clinical relapse post-BMT. This has led to the hypothesis that bcr-abl mRNA might be expressed in cells that have lost either proliferative or myeloid differentiation potential. To directly characterize the cells detected by PCR in patients with CML after allogeneic BMT, we first identified five individuals in whom PCR-positive cells could be detected at multiple times post-BMT. Bone marrow samples from these individuals were cultured in vitro and single erythroid, granulocytic, and macrophage colonies, each containing 50 to 100 cells, were examined for the presence of bcr-abl mRNA by PCR. PCR-positive myeloid colonies could be detected in four of five individuals in marrow samples obtained 5 to 56 months post-BMT. Overall, 7 of 135 progenitor cell colonies (5.2%) were found to be PCR-positive. The expression of bcr-abl mRNA appeared to be equally distributed among committed erythroid, macrophage, and granulocyte progenitors. These patients have now been followed-up for an additional 20 to 33 months from the time of progenitor cell PCR analysis but only one of these individuals has been found to have cytogenetic evidence of recurrent Ph+ cells. These results show that long-term persistence of PCR-detectable bcr-abl mRNA after allogeneic BMT can be caused by the persistence of CML-derived clonogenic myeloid precursors that have survived the BMT preparative regimen. These cells continue to have both proliferative and myeloid differentiation capacity in vitro. Nevertheless, these PCR-positive cells do not appear to either expand or differentiate in vivo for prolonged periods, suggesting the presence of mechanisms for suppression of residual clonogenic leukemia cells in vivo.


Blood ◽  
2012 ◽  
Vol 119 (24) ◽  
pp. 5898-5908 ◽  
Author(s):  
Renee J. Robb ◽  
Katie E. Lineburg ◽  
Rachel D. Kuns ◽  
Yana A. Wilson ◽  
Neil C. Raffelt ◽  
...  

Abstract FoxP3+ confers suppressive properties and is confined to regulatory T cells (Treg) that potently inhibit autoreactive immune responses. In the transplant setting, natural CD4+ Treg are critical in controlling alloreactivity and the establishment of tolerance. We now identify an important CD8+ population of FoxP3+ Treg that convert from CD8+ conventional donor T cells after allogeneic but not syngeneic bone marrow transplantation. These CD8+ Treg undergo conversion in the mesenteric lymph nodes under the influence of recipient dendritic cells and TGF-β. Importantly, this population is as important for protection from GVHD as the well-studied natural CD4+FoxP3+ population and is more potent in exerting class I–restricted and antigen-specific suppression in vitro and in vivo. Critically, CD8+FoxP3+ Treg are exquisitely sensitive to inhibition by cyclosporine but can be massively and specifically expanded in vivo to prevent GVHD by coadministering rapamycin and IL-2 antibody complexes. CD8+FoxP3+ Treg thus represent a new regulatory population with considerable potential to preferentially subvert MHC class I–restricted T-cell responses after bone marrow transplantation.


Blood ◽  
2018 ◽  
Vol 132 (22) ◽  
pp. 2351-2361 ◽  
Author(s):  
Lauren P. McLaughlin ◽  
Rayne Rouce ◽  
Stephen Gottschalk ◽  
Vicky Torrano ◽  
George Carrum ◽  
...  

Abstract There is a Blood Commentary on this article in this issue.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1196-1200 ◽  
Author(s):  
A Velardi ◽  
A Terenzi ◽  
S Cucciaioni ◽  
R Millo ◽  
CE Grossi ◽  
...  

Abstract Peripheral blood T cell subsets were evaluated in 11 patients during the reconstitution phase after allogeneic bone marrow transplantation and compared with 11 age-matched controls. The proportion of cells coexpressing Leu7 and CD11b (C3bi receptor) markers was determined within the CD4+ (T-helper) and the CD8+ (T-suppressor) subsets by two- color immunofluorescence analysis. CD4+ and CD8+ T cells reached normal or near-normal values within the first year posttransplant. In contrast to normal controls, however, most of the cells in both subsets coexpressed the Leu7 and CD11b markers. T cells with such phenotype display the morphological features of granular lymphocytes (GLs) and a functional inability to produce interleukin 2 (IL 2). These T cell imbalances were not related to graft v host disease (GvHD) or to clinically detectable virus infections and may account for some defects of cellular and humoral immunity that occur after bone marrow transplantation./


Sign in / Sign up

Export Citation Format

Share Document