The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells

Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4103-4110 ◽  
Author(s):  
Aude Sirven ◽  
Françoise Pflumio ◽  
Véronique Zennou ◽  
Monique Titeux ◽  
William Vainchenker ◽  
...  

Gene transfer in human hematopoietic stem cells (HSCs) has great potential for both gene therapy and the understanding of hematopoiesis. As HSCs have extensive proliferative capacities, stable gene transfer should include genomic integration of the transgene. Lentiviral vectors are now preferred to oncoretroviral vectors especially because they integrate in nondividing cells such as HSCs, thereby avoiding the use of prolonged cytokine stimulation. Human immunodeficiency virus type-1 (HIV-1) has evolved a complex reverse transcription strategy including a central strand displacement event controlled in cis by the central polypurine tract (cPPT) and the central termination sequence (CTS). This creates, at the center of HIV-1 linear DNA molecules, a 99-nucleotide-long plus-strand overlap, the DNA flap, which acts as a cis-determinant of HIV-1 genome nuclear import. The reinsertion of the DNA flap sequence in an HIV-derived lentiviral vector promotes a striking increase of gene transduction efficiency in human CD34+ hematopoietic cells, and the complementation of the nuclear import defect present in the parental vector accounts for this result. In a short ex vivo protocol, the flap-containing vector allows efficient transduction of the whole hierarchy of human HSCs including both slow-dividing or nondividing HSCs that have multiple lymphoid and myeloid potentials and primitive cells with long-term engraftment ability in nonobese diabetic/severe combined immunodeficiency mice (NOD/SCID).

Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4103-4110 ◽  
Author(s):  
Aude Sirven ◽  
Françoise Pflumio ◽  
Véronique Zennou ◽  
Monique Titeux ◽  
William Vainchenker ◽  
...  

Abstract Gene transfer in human hematopoietic stem cells (HSCs) has great potential for both gene therapy and the understanding of hematopoiesis. As HSCs have extensive proliferative capacities, stable gene transfer should include genomic integration of the transgene. Lentiviral vectors are now preferred to oncoretroviral vectors especially because they integrate in nondividing cells such as HSCs, thereby avoiding the use of prolonged cytokine stimulation. Human immunodeficiency virus type-1 (HIV-1) has evolved a complex reverse transcription strategy including a central strand displacement event controlled in cis by the central polypurine tract (cPPT) and the central termination sequence (CTS). This creates, at the center of HIV-1 linear DNA molecules, a 99-nucleotide-long plus-strand overlap, the DNA flap, which acts as a cis-determinant of HIV-1 genome nuclear import. The reinsertion of the DNA flap sequence in an HIV-derived lentiviral vector promotes a striking increase of gene transduction efficiency in human CD34+ hematopoietic cells, and the complementation of the nuclear import defect present in the parental vector accounts for this result. In a short ex vivo protocol, the flap-containing vector allows efficient transduction of the whole hierarchy of human HSCs including both slow-dividing or nondividing HSCs that have multiple lymphoid and myeloid potentials and primitive cells with long-term engraftment ability in nonobese diabetic/severe combined immunodeficiency mice (NOD/SCID).


1998 ◽  
Vol 72 (7) ◽  
pp. 5781-5788 ◽  
Author(s):  
Richard E. Sutton ◽  
Henry T. M. Wu ◽  
Richard Rigg ◽  
Ernst Böhnlein ◽  
Patrick O. Brown

ABSTRACT Lentiviruses are potentially advantageous compared to oncoretroviruses as gene transfer agents because they can infect nondividing cells. We demonstrate here that human immunodeficiency virus type 1 (HIV-1)-based vectors were highly efficient in transducing purified human hematopoietic stem cells. Transduction rates, measured by marker gene expression or by PCR of the integrated provirus, exceeded 50%, and transduction appeared to be independent of mitosis. Derivatives of HIV-1 were constructed to optimize the vector, and a deletion of most of Vif and Vpr was required to ensure the long-term persistence of transduced cells with relatively stable expression of the marker gene product. These results extend the utility of this lentivirus vector system.


2007 ◽  
Vol 81 (23) ◽  
pp. 13259-13264 ◽  
Author(s):  
Satoru Watanabe ◽  
Shinrai Ohta ◽  
Misako Yajima ◽  
Kazuo Terashima ◽  
Mamoru Ito ◽  
...  

ABSTRACT In a previous study, we demonstrated that humanized NOD/SCID/IL2Rγnull (hNOG) mice constructed with human hematopoietic stem cells (HSCs) allow efficient human immunodeficiency virus type 1 (HIV-1) infection. However, HIV-1 infection could be monitored for only 43 days in the animals due to their short life spans. By transplanting HSCs without any myeloablation methods, the mice successfully survived longer than 300 days with stable engraftment of human cells. The mice showed high viremia state for more than the 3 months examined, with systemic HIV-1 infection and gradual decrease of CD4+ T cells analogous to that in humans. These capacities of the hNOG mice are very attractive for modeling mechanisms of AIDS progression and therapeutic strategy.


1999 ◽  
Vol 73 (1) ◽  
pp. 728-737 ◽  
Author(s):  
Hongmei Shen ◽  
Tao Cheng ◽  
Frederick I. Preffer ◽  
David Dombkowski ◽  
Michael H. Tomasson ◽  
...  

ABSTRACT Interactions of human immunodeficiency virus type 1 (HIV-1) with hematopoietic stem cells may define restrictions on immune reconstitution following effective antiretroviral therapy and affect stem cell gene therapy strategies for AIDS. In the present study, we demonstrated mRNA and cell surface expression of HIV-1 receptors CD4 and the chemokine receptors CCR-5 and CXCR-4 in fractionated cells representing multiple stages of hematopoietic development. Chemokine receptor function was documented in subsets of cells by calcium flux in response to a cognate ligand. Productive infection by HIV-1 via these receptors was observed with the notable exception of stem cells, in which case the presence of CD4, CXCR-4, and CCR-5, as documented by single-cell analysis for expression and function, was insufficient for infection. Neither productive infection, transgene expression, nor virus entry was detectable following exposure of stem cells to either wild-type HIV-1 or lentivirus constructs pseudotyped in HIV-1 envelopes of macrophage-tropic, T-cell-tropic, or dualtropic specificity. Successful entry into stem cells of a vesicular stomatitis virus G protein-pseudotyped HIV-1 construct demonstrated that the resistance to HIV-1 was mediated at the level of virus-cell membrane fusion and entry. These data define the hematopoietic stem cell as a sanctuary cell which is resistant to HIV-1 infection by a mechanism independent of receptor and coreceptor expression that suggests a novel means of cellular protection from HIV-1.


2000 ◽  
Vol 74 (24) ◽  
pp. 11811-11824 ◽  
Author(s):  
Kalpana Gupta ◽  
David Ott ◽  
Thomas J. Hope ◽  
Robert F. Siliciano ◽  
Jef D. Boeke

ABSTRACT Active nuclear import of the human immunodeficiency virus type 1 (HIV-1) preintegration complex (PIC) is essential for the productive infection of nondividing cells. Nuclear import of the PIC is mediated by the HIV-1 matrix protein, which also plays several critical roles during viral entry and possibly during virion production facilitating the export of Pr55Gag and genomic RNA. Using a yeast two-hybrid screen, we identified a novel human virion-associated matrix-interacting protein (VAN) that is highly conserved in vertebrates and expressed in most human tissues. Its expression is upregulated upon activation of CD4+ T cells. VAN is efficiently incorporated into HIV-1 virions and, like matrix, shuttles between the nucleus and cytoplasm. Furthermore, overexpression of VAN significantly inhibits HIV-1 replication in tissue culture. We propose that VAN regulates matrix nuclear localization and, by extension, both nuclear import of the PIC and export of Pr55Gag and viral genomic RNA during virion production. Our data suggest that this regulatory mechanism reflects a more global process for regulation of nucleocytoplasmic transport.


Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2680-2687 ◽  
Author(s):  
G Zauli ◽  
MC Re ◽  
B Davis ◽  
L Sen ◽  
G Visani ◽  
...  

Abstract In this report the role played by human immunodeficiency virus type-1 (HIV-1) in the pathogenesis of HIV-1-related thrombocytopenia was investigated. CD34+ hematopoietic stem/progenitor cells were purified from the bone marrow (BM) of HIV-1(+) thrombocytopenic patients, HIV- 1(+) nonthrombocytopenic individuals, HIV-1(-) patients with immune thrombocytopenic purpura, and HIV-1(-) normal donors. CD34+ cells from HIV-1(+) thrombocytopenic individuals alone showed a reduced capacity to give rise to megakaryocytic colonies (CFU-Meg) and also a progressive and significant decline in cell number when placed in liquid culture containing recombinant human interleukin-3 (rIL-3). This decline involved not only megakaryocyte but also erythroid and granulocyte/macrophage progenitors. The defects in megakaryocyte colony formation and CD34+ cell growth did not result from a productive HIV-1 infection of CD34+ cells. Moreover, HIV-1 DNA was absent from CD34+ cells in 10 of 12 thrombocytopenic patients examined. On the other hand, the decreased survival/proliferation of CD34+ cells in liquid culture, within the HIV-1(+) thrombocytopenic patients, was correlated with the presence of HIV-1 p24 antigen in BM plasma. These results demonstrate an impairment of CD34+ cells in HIV-1(+) individuals presenting thrombocytopenia as the only hematologic manifestation. Furthermore, these findings suggest that increased viral replication in the BM microenvironment may cause this impairment and possibly contributes to HIV-induced thrombocytopenia.


2002 ◽  
Vol 76 (23) ◽  
pp. 12087-12096 ◽  
Author(s):  
Jeffrey D. Dvorin ◽  
Peter Bell ◽  
Gerd G. Maul ◽  
Masahiro Yamashita ◽  
Michael Emerman ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells productively because the nuclear import of viral nucleic acids occurs in the absence of cell division. A number of viral factors that are present in HIV-1 preintegration complexes (PICs) have been assigned functions in nuclear import, including an essential valine at position 165 in integrase (IN-V165) and the central polypurine tract (cPPT). In this article, we report a comparison of the replication and infection characteristics of viruses with disruptions in the cPPT and IN-V165. We found that viruses with cPPT mutations still replicated productively in both dividing and nondividing cells, while viruses with a mutation at IN-V165 did not. Direct observation of the subcellular localization of HIV-1 cDNAs by fluorescence in situ hybridization revealed that cDNAs synthesized by both mutant viruses were readily detected in the nucleus. Thus, neither the cPPT nor the valine residue at position 165 of integrase is essential for the nuclear import of HIV-1 PICs.


2009 ◽  
Vol 84 (1) ◽  
pp. 397-406 ◽  
Author(s):  
Lavanya Krishnan ◽  
Kenneth A. Matreyek ◽  
Ilker Oztop ◽  
Kyeongeun Lee ◽  
Christopher H. Tipper ◽  
...  

ABSTRACT Recent genome-wide screens have highlighted an important role for transportin 3 in human immunodeficiency virus type 1 (HIV-1) infection and preintegration complex (PIC) nuclear import. Moreover, HIV-1 integrase interacted with recombinant transportin 3 protein under conditions whereby Moloney murine leukemia virus (MLV) integrase failed to do so, suggesting that integrase-transportin 3 interactions might underscore active retroviral PIC nuclear import. Here we correlate infectivity defects in transportin 3 knockdown cells with in vitro protein binding affinities for an expanded set of retroviruses that include simian immunodeficiency virus (SIV), bovine immunodeficiency virus (BIV), equine infectious anemia virus (EIAV), feline immunodeficiency virus (FIV), and Rous sarcoma virus (RSV) to critically address the role of integrase-transportin 3 interactions in viral infection. Lentiviruses, with the exception of FIV, display a requirement for transportin 3 in comparison to MLV and RSV, yielding an infection-based dependency ranking of SIV > HIV-1 > BIV and EIAV > MLV, RSV, and FIV. In vitro pulldown and surface plasmon resonance assays, in contrast, define a notably different integrase-transportin 3 binding hierarchy: FIV, HIV-1, and BIV > SIV and MLV > EIAV. Our results therefore fail to support a critical role for integrase binding in dictating transportin 3 dependency during retrovirus infection. In addition to integrase, capsid has been highlighted as a retroviral nuclear import determinant. Accordingly, MLV/HIV-1 chimera viruses pinpoint the genetic determinant of sensitization to transportin 3 knockdown to the HIV-1 capsid protein. We therefore conclude that capsid, not integrase, is the dominant viral factor that dictates transportin 3 dependency during HIV-1 infection.


1999 ◽  
Vol 73 (5) ◽  
pp. 3649-3660 ◽  
Author(s):  
Richard E. Sutton ◽  
Michael J. Reitsma ◽  
Nobuko Uchida ◽  
Patrick O. Brown

ABSTRACT Human immunodeficiency virus (HIV) type 1 vectors are highly efficient in their ability to transduce human progenitor hematopoietic stem cells (PHSC). Although mitosis was not required for transduction of these cells, transduction rates were much greater once cells had been cultured in the presence of cytokines. Transduction rates, however, rarely exceeded 70%. We demonstrate here that there is a distinct subpopulation that is more easily transduced by HIV vectors. These cells were distinguished by a disproportionate population in the S/G2/M phases of the cell cycle. By sorting them prior to transduction, we found that those cells in either the G1 or S/G2/M fraction were more readily transduced than G0 cells. Maintaining the cells in G0 by omitting cytokines from the medium reduced transduction rates by up to 10-fold. Addition of cytokines to the medium immediately after transduction did not improve the transduction efficiency as measured by expression of the transgene. Analysis of replication intermediates indicated that the block to transduction of G0 cells operated near the time of initiation of reverse transcription. These results suggest that although lentivirus vectors can transduce nondividing PHSC, transduction efficiency is severalfold greater once the cells exit G0 and enter G1. Further characterization of these more transducible cells and identification of the cellular factors responsible may enhance transduction while maintaining the pluripotentiality of the PHSC.


Sign in / Sign up

Export Citation Format

Share Document