Mixed chimerism induces donor-specific T-cell tolerance across a highly disparate xenogeneic barrier

Blood ◽  
2002 ◽  
Vol 99 (10) ◽  
pp. 3823-3829 ◽  
Author(s):  
Masahiro Abe ◽  
Jin Qi ◽  
Megan Sykes ◽  
Yong-Guang Yang

Induction of tolerance is likely to be essential for successful xenotransplantation because immune responses across xenogeneic barriers are vigorous. Although mixed hematopoietic chimerism leads to stable donor-specific tolerance in allogeneic and closely related xenogeneic (eg, rat-to-mouse) combinations, the ability of this approach to induce tolerance across a highly disparate xenogeneic barrier has not yet been demonstrated. In this study, we investigated the immune responses of murine T cells that developed in mice with pre-established porcine hematopoietic chimerism. Our results show for the first time that induction of porcine hematopoietic chimerism can eliminate the development of antiporcine donor responses in a highly disparate xenogeneic species. Porcine hematopoietic chimeras showed donor-specific nonresponsiveness in the mixed lymphocyte reaction, lack of antidonor IgG antibody production, and acceptance of donor skin grafts. Thus, mixed chimerism is capable of inducing tolerance in a highly disparate xenogeneic combination and may have clinical potential to prevent xenograft rejection.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yi-Bin Chen ◽  
Tatsuo Kawai ◽  
Thomas R. Spitzer

The induction of specific tolerance, in order to avoid the detrimental effects of lifelong systemic immunosuppressive therapy after organ transplantation, has been considered the “Holy Grail” of transplantation. Experimentally, tolerance has been achieved through clonal deletion, through costimulatory blockade, through the induction or infusion of regulatory T-cells, and through the establishment of hematopoietic chimerism following donor bone marrow transplantation. The focus of this review is how tolerance has been achieved following combined bone marrow and kidney transplantation. Preclinical models of combined bone marrow and kidney transplantation have shown that tolerance can be achieved through either transient or sustained hematopoietic chimerism. Combined transplants for patients with multiple myeloma have shown that organ tolerance and prolonged disease remissions can be accomplished with such an approach. Similarly, multiple clinical strategies for achieving tolerance in patients without an underlying malignancy have been described, in the context of either transient or durable mixed chimerism or sustained full donor hematopoiesis. To expand the chimerism approach to deceased donor transplants, a delayed tolerance approach, which will involve organ transplantation with conventional immunosuppression followed months later by bone marrow transplantation, has been successful in a primate model. As combined bone marrow and organ transplantation become safer and increasingly successful, the achievement of specific tolerance may become more widely applicable.


2000 ◽  
Vol 69 (Supplement) ◽  
pp. S294-S295
Author(s):  
Suzanne T. Ildstad ◽  
Roger Herzig ◽  
Christina Kaufman ◽  
Pamela Crilley ◽  
Susan Brozena ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3025-3025 ◽  
Author(s):  
Leslie Kean ◽  
Kelly Hamby ◽  
Thomas Pearson ◽  
Christian Larsen

Abstract Introduction: Immunologic tolerance remains an elusive goal of transplantation. In mice, mixed-chimerism and donor-specific tolerance can be induced by blocking the CD28/CD40L T-cell costimulatory pathways after bone marrow transplant (BMT). However, large doses of marrow (~1x109 cells/kg) are required, and these regimens have not yet been successfully translated to clinical practice. There is a growing body of evidence that NK cells may play a central role in the failure of low doses of donor bone marrow to engraft, but the mechanisms underlying NK alloreactivity remain to be determined. Methods: (1) BMT in the presence of CD28/CD40L T cell costimulation blockade was performed using C57BL/6 (B6) recipients and Balb/C donor bone marrow. The role of host-anti-donor NK alloreactivity in preventing engraftment was determined by specifically depleting B6 NK cells. The contribution of the NK cell-surface receptor, LFA1 to NK alloreactivity was determined with the anti-LFA1 blocking antibody M17/5.2. (2) An in vivo NK alloreactivity assay was developed that should allow the investigation of the mechanism of NK alloreactivity and the molecular mediators of this process. In this assay, CFSE-labeled B6 splenocytes were adoptively transferred into B6xBalbC F1 progeny. As such, alloreactivity was specifically mediated by NK cells. NK alloreactivity was measured flow-cytometrically by the disappearance of the CFSE-labeled B6 population. Results: Transient depletion of recipient NK cells resulted in increased donor stem cell survival and the induction of stable mixed-chimerism and tolerance despite BMT with low doses (≤2x106 cells) of donor bone marrow. This effect was specific to allogeneic donor cells: depletion of NK cells did not increase engraftment of syngeneic bone marrow. Blocking the adhesion molecule, LFA-1 recapitulated the effects of whole-scale NK depletion. Newly emergent NK cells exhibited significantly lower expression of the donor-specific activating receptor, Ly49D, and these NK cells did not exhibit in vivo alloreactivity. These results suggest that the NK repertoire in the mixed-chimeric setting exhibited donor-specific tolerance. Using the in vivo hybrid resistance NK alloreactivity assay, we measured 80% NK-specific target killing 8 days after adoptive transfer. Significantly less killing occurred at 2, 4, and 6 days. Pre-sensitizing the recipient for 4 days increased the efficiency of killing—from 50% to 80%, suggesting a potent activation phenomenon required for efficient NK allorecognition and/or cytotoxicity. Implications: These results reveal the importance of NK alloreactivity in the acquisition of mixed-chimerism after BMT at limiting stem cell doses, and suggest that clinical approaches to tolerance-induction transplantation may require mechanisms to control NK alloreactivity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2332-2332
Author(s):  
Omar Duramad ◽  
Amy Laysang ◽  
Jun Li ◽  
Yasuyuki Ishii ◽  
Reiko Namikawa

Abstract Pharmacological induction of donor-specific tolerance would provide significant benefits in both organ transplantation and bone marrow transplantation settings. We investigated the ability of alpha-galactosylceramide (α-GC) in inducing donor-specific tolerance when given in a liposomal formulation. α-GC is a ligand for CD1d molecules expressed on antigen-presenting cells. Upon presentation by CD1d to invariant natural killer T (iNKT) cells, α-GC induces the rapid release of Th1, Th2, or immune regulatory cytokines and initiation of multiple downstream cellular events such as T cell polarization and expansion of dendritic cell subsets. Previously, using RGI-2001 (a liposomal formulation of a synthetic derivative of α-GC, KRN7000), we have demonstrated that the activation of iNKT cells by RGI-2001 induces expansion of regulatory dendritic cells (DCreg) and subsequent generation of antigen-specific Foxp3+ regulatory T (Treg) cells in the presence of target antigens. In the present study, we examined the effects of RGI-2001 on immune responses against alloantigens using a murine in vivo experimental system. In brief, Balb/c (H-2d) recipients were primed with 5x10e6 C57BL/6 (H-2b) whole spleen cells (WSC) with varying doses of RGI-2001 (0.002 to 20 μg/mouse) given intravenously. Seven days later, WSC from the Balb/c recipients were examined for their cellular composition by FACS analysis. Subtle but reproducible dose-dependent increases were noted in the percentage of the LinnegCD11cintCD45RB+ dendritic cell (DC) population, known to be enriched for regulatory DC (DCreg). Since RGI-2001 induces an increase in the total spleen cells, the absolute DCreg cell numbers in RGI-2001-treated spleen increased in a statistically significant manner as compared with untreated controls. As for the percentages of CD4+Foxp3+ Treg cells, no apparent differences were observed. However, an analysis using the Ki67 cycling cell specific nuclear marker revealed a clear dose-dependent increase in the cycling cell fraction among CD4+Foxp3+ Treg cells. These results together confirmed that RGI-2001 induces expansion of DCregs and Tregs. Next, we investigated the effects of RGI-2001 on immune responses against the donor alloantigens. The WSC of the recipient mice were restimulated in vitro with the mitomycin C-treated, T cell depleted donor (C57BL/6) WSC, and the levels of proliferation were measured by MTT colorimetric assay (one-way MLR). It was found that RGI-2001 treatment reproducibly and significantly suppressed proliferation of host WSC in response to donor alloantigens. A dose of 2μg/mouse of RGI-2001 induced in average ~30% reduction in host WSC proliferation. IL-2 production was also reduced to ~50%, further indicating the suppressive effects of RGI-2001. Notably, it was confirmed that suppressive effect of RGI- 2001 was restricted to the responses towards donor specific alloantigens, as no suppression in proliferation nor IL-2 production was noted when a third party (C3H) WSC was used as the stimulators. Collectively, the results suggest that RGI-2001, when administered together with allogeneic donor cells, can induce donor specific tolerance by expanding DCregs and inducing antigen-specific Tregs. RGI-2001 may have a potential to be a novel therapy to prevent organ rejection as well as GvHD in bone marrow transplantation.


1997 ◽  
Vol 64 (5) ◽  
pp. 709-716 ◽  
Author(s):  
Masaaki Kimikawa ◽  
David H. Sachs ◽  
Robert B. Colvin ◽  
Amelia Bartholomew ◽  
Tatsuo Kawai ◽  
...  

1999 ◽  
Vol 67 (7) ◽  
pp. S34
Author(s):  
Y. Fuchimoto ◽  
C. Huang ◽  
Q. Chang ◽  
K. Yamada ◽  
D. Neville ◽  
...  

2000 ◽  
Vol 69 (7) ◽  
pp. 1242-1251 ◽  
Author(s):  
Douglas A. Hale ◽  
Rita Gottschalk ◽  
Akihisa Umemura ◽  
Takashi Maki ◽  
Anthony P. Monaco

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1275-1275
Author(s):  
William H. Peranteau ◽  
Masayuki Endo ◽  
Obinna O. Adibe ◽  
Aziz Merchant ◽  
Philip Zoltick ◽  
...  

Abstract In utero bone marrow transplantation (IUBMT) induces donor-specific tolerance for postnatal cellular or organ transplantation. Consistent induction of tolerance requires a threshold of mixed hematopoietic chimerism (>1%). CD26 is a peptidase whose inhibition has been demonstrated to influence granulocyte colony-stimulating factor induced mobilization of hematopoietic stem cells and increase homing and engraftment of BM cells in adult transplantation models. We hypothesized that CD26 inhibition would increase the frequency and levels of allogeneic hematopoietic chimerism after IUBMT. Methods: B6 GFP BM was injected intravenously into E14 Balb/c fetal mice at a dose of 20e6 cells/fetus with or without CD26 inhibition with diprotin A. Early kinetic analysis was performed to assess donor cell homing to fetal liver (FL). Peripheral blood (PB) was analyzed up to 20 weeks after birth for donor cell chimerism and multilineage engraftment by flow cytometry. PB was also analyzed for donor cell chimerism at the same time points from Balb/c mice receiving 10e6 CD26 inhibited GFP BM cells coinjected with 10e6 noninhibited congenic B6Ly5.2 BM cells at E14 to assess for an in utero competitive advantage provided by CD26 inhibition. Results: CD26 inhibition increased donor cell homing to the FL at 24, 48 and 96 hours after injection (69.27±8.19 vs 30.21±6.44, 57.20±14.63 vs 36.80±14.20, 46.14±15.79 vs 12.09±7.01; p<0.05 at all time points). The frequency and levels of engraftment at 4 weeks of life were increased in those mice receiving CD26 inhibited BM compared to noninhibited BM (50.0% vs 22.5%; 20.48±14 vs 6.96±8.44, p<0.05). Chimerism was multilineage and maintained at 20 weeks of age (figure 1a) supporting improvement of engraftment at the stem or early progenitor cell level (* p<0.05 comparing chimerism levels between inhibitied and noninhibited cells). The coinjection of CD26 inhibited and noninhibited cells resulted in higher levels of engraftment of inhibited cells at all time points up to 16 weeks of age arguing for a competitive engraftment advantage of early progenitor cells provided by CD26 inhibition (figure 1b). Conclusion: CD26 inhibition of donor BM prior to IUBMT results in an increased efficiency of donor engraftment and higher levels of chimerism. CD26 inhibition offers a potential mechanism to increase the level of engraftment and the rate of donor specific tolerance and may facilitate combined pre and postnatal strategies for cellular and organ transplantation. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document