scholarly journals Validation and clinical application of transactivation assays for RUNX1 variant classification

Author(s):  
Melanie Decker ◽  
Anupriya Agarwal ◽  
Andreas Benneche ◽  
Jane E. Churpek ◽  
Nicolas Duployez ◽  
...  

Familial platelet disorder with associated myeloid malignancies (RUNX1-FPD) is caused by heterozygous pathogenic germline variants of RUNX1. In the present study, we evaluate the applicability of transactivation assays to investigate RUNX1 variants in different regions of the protein. We studied 11 variants to independently validate transactivation assays supporting variant classification following the ClinGen Myeloid Malignancies variant curation expert panel guidelines. Variant classification is key for the translation of genetic findings. We showed that new assays need to be developed to assess C-terminal RUNX1 variants. Two variants of uncertain significance (VUS) were reclassified to likely pathogenic. Additionally, our analyses supported the (likely) pathogenic classification of two other variants. We demonstrated functionality of four VUS, but reclassification to (likely) benign was challenging and suggested the need to reevaluate current classification guidelines. Finally, clinical utility of our assays was illustrated in the context of seven families. Our data confirmed RUNX1-FPD suspicion in three families with RUNX1-FPD-specific family history. Whereas for three variants identified in non RUNX1-FPD-typical families, no functional defect was detected. Applying functional assays to support RUNX1 variant classification can be essential for adequate care of index patients and their relatives at risk. It facilitates translation of genetic data into personalized medicine.

Leukemia ◽  
2021 ◽  
Author(s):  
Melanie Decker ◽  
Tim Lammens ◽  
Alina Ferster ◽  
Miriam Erlacher ◽  
Ayami Yoshimi ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1090-1090
Author(s):  
Kai Yu ◽  
Matthew Merguerian ◽  
Natalie Deuitch ◽  
Erica Bresciani ◽  
Joie Davis ◽  
...  

Abstract Familial platelet disorder with associated myeloid malignancies (FPDMM) is a rare autosomal dominant disease caused by germline RUNX1 mutations. FPDMM patients have defective megakaryocytic development, low platelet counts, prolonged bleeding times, and a life-long risk (20-50%) of developing hematological malignancies. FPDMM is a rare genetic disease in need of comprehensive clinical and genomic studies. In early 2019 we launched a longitudinal natural history study of patients with FPDMM at the NIH Clinical Center and by May 2021 we have enrolled 98 patients and 100 family controls from 55 unrelated families. Genomic data have been generated from 56 patients in 24 families, including whole exome sequencing (WES), RNA-seq, and single-nucleotide polymorphism (SNP) array. We have identified 21 different germline RUNX1 variants among these 24 families, which include lost-of-function mutations throughout the RUNX1 gene, but pathogenic/likely pathogenic missense mutations are mostly clustered in the runt-homology domain (RHD). As an important form of RUNX1 germline mutations, five splice site variants located between exon 4-5 and exon 5-6 were identified in 6 families, which led to the productions of novel transcript forms that are predicted to generate truncated RUNX1 proteins. Large deletions affecting the RUNX1 gene are also common, ranging from 50 Kb to 1.5Mb, which were detected in 8 of the 55 enrolled families. Besides RUNX1, copy number variation (CNV) analysis from both SNP array and WES showed limited CNV events in non-malignant FPDMM patients. In addition, fusion gene analysis did not detect any in-frame fusion gene in these patients, indicating a relatively stable chromosome status in FPDMM patients. Somatic mutation landscape shows that the overall mutation burden in non-malignant FPDMM patients is lower than AML or other cancer types. However, in 13 of the 44 non-malignant patients (30%), somatic mutations were detected in at least one of the reported clonal hematopoiesis of indeterminate potential (CHIP) genes, significantly higher than the general population (4.3%). Moreover, 85% of our patients who carried CHIP mutations are under 65 years of age; in the general population, only 10% of people above 65 years of age and 1% of people under 50 were reported to carry CHIP mutations. Among mutated genes related to clonal hematopoiesis, BCOR is the most frequently mutated gene (5/44) in our FPDMM cohort, which is not a common CHIP gene among the general population. Mutations in known CHIP genes including SF3B1, TET2, and DNMT3A were also found in more than one patient. In addition, sequencing of 5 patients who already developed myeloid malignancies detected somatic mutations in BCOR, TET2, NRAS, KRAS, CTCF, KMT2D, PHF6, and SUZ12. Besides reported CHIP genes or leukemia driver genes, 3 unrelated patients carried somatic mutations in the NFE2 gene, which is essential for regulating erythroid and megakaryocytic maturation and differentiation. Two of the NFE2 mutations are nonsense mutations, and the other is a missense mutation in the important functional domain. NFE2 somatic mutations may play important roles in developing malignancy because 2 of the 3 patients already developed myeloid malignancies. For multiple patients in our cohort, we have sequenced their DNA on multiple timepoints. We have observed patients with expanding clones carrying FKBP8, BCOR or FOXP1 mutations. We have also observed a patient with relatively stable clone(s) with somatic BCOR, DNMT3A, and RUNX1T1, who have been sampled over more than four years. We will follow these somatic mutations through sequencing longitudinally and correlate the findings with clinical observations to see if the dynamic changes of CHIP clones harboring the mutations give rise to MDS or leukemia. In summary, the genomic analysis of our new natural history study demonstrated diverse types of germline RUNX1 mutations and high frequency of somatic mutations related to clonal hematopoiesis in FPDMM patients. These findings indicate that monitoring the dynamic changes of these CHIP mutations prospectively will benefit patients' clinical management and help us understand possible mechanisms for the progression from FPDMM to myeloid malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1917-1917 ◽  
Author(s):  
Keita Kirito ◽  
Toru Mitsumori ◽  
Takahiro Nagashima ◽  
Masae Kunitama ◽  
Kei Nakajima ◽  
...  

Abstract RUNX1 transcription factor plays pivotal roles in the development of definitive hematopoiesis. Allelic loss of the gene causes complete absence of fetal liver hematopoiesis. In addition to normal hematopoiesis, aberrant expression of RUNX1 is also involved in the pathogenesis of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Familial platelet disorder with propensity to develop myeloid malignancies (FPD/AML, OMIM 601399) is a rare autosomal dominant disorder characterized by thrombocytopenia, dysfunction of platelets and predisposition to the development of myeloid malignancies. Recent studies revealed that inherited mutation of RUNX1 gene is responsible for the onset of FPD/AML. To date, 12 families of FPD/AML have been reported in the literature, and point mutation in the RUNT domain or loss of heterozygocity (LOH) of the gene has been identified in the pedigree. Here, we report a Japanese family with FPD/AML with a novel mutation of RUNX1 gene. A 38-year-old man was admitted to our hospital because of MDS (RAEB) in August 2003. Cytogenetic analysis revealed abnormal karyotype; 46XY, t (7; 8)(q34; q11). In addition, prolongation of bleeding time and abnormal platelet aggregation were observed. His son and daughter also showed mild bleeding tendency and had mild thrombocytopenia. In April 2006, the daughter developed MDS (RAEB) with trisomy 8 at age 16. After informed consent, blood samples were obtained from all family members and all 9 exons of RUNX1 gene were sequenced. We identified a novel G to T single-nucleotide mutation in the 5′-untranslated region (5′-UTR) in the exon1, corresponding to position 102 of RUNX1 transcripts (NCBI accession no. D43969). This mutation was also found in all the affected individuals but not in the healthy members. To investigate the possibility of hemizygous intragenic deletion of the gene, we performed an array- based comparative genomic hybridization using Affymetrix GeneChip Human Mapping 250K set including 23 SNPs in RUNX1 gene. We found no loss of heterozygosity of RUNX1 gene in the affected members. Because the mutation is located in 5′-UTR, we investigated whether this mutation might affect the expression of RUNX1 transcripts. Transcription of RUNX1 is regulated by two distinct promoter regions, distal and proximal, resulting in the generation of transcripts having different 5′-UTRs. The 5′-UTR of transcripts controlled by distal promoter contains exon1 (distal form), whereas that of transcripts controlled by proximal promoter contains exon3 but not exon1 (proximal form). We analyzed the expression level of both transcripts from bone marrow cells using quantitative RT-PCR. Affected individuals showed 10 to 15 times higher expression of the distal form of RUNX1 transcripts, compared to normal controls (n=3), MDS patients (n=3) and AML patient (n=1). Considering that not only haploinsufficiney but also overexpression of RUNX1 can cause AML, aberrant expression of RUNX1 induced by the point mutation in 5′-UTR may be involved in progression of FPD/AML.


Author(s):  
Masatoshi Sakurai ◽  
Yasuhito Nannya ◽  
Rie Yamazaki ◽  
Kentaro Yamaguchi ◽  
Yuya Koda ◽  
...  

2016 ◽  
Vol 24 (8) ◽  
pp. 3-4 ◽  
Author(s):  
Tim Ripperger ◽  
Kiran Tawana ◽  
Christian Kratz ◽  
Brigitte Schlegelberger ◽  
Jude Fitzgibbon ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
pp. 5-10
Author(s):  
Anna Piotrowicz ◽  
Katarzyna Paczwa ◽  
Joanna Gołębiewska ◽  
Radosław Różycki

Despite the improvement of diagnostic and therapeutic techniques age-related macular degeneration is still one of the main causes of central vision impairment. Throughout the years, the classification of subretinal neovascularization in the course of age-related macular degeneration has changed due to the advancement of diagnostic and therapeutic techniques. In 2020 an expert panel reached consensus on a new nomenclature for neovascularization in the course of age-related macular degeneration introducing the concept of macular neovascularization, which refers to each neovascularization in macula, regardless of the location.


2018 ◽  
Vol 108 (6) ◽  
pp. 652-657 ◽  
Author(s):  
Kateřina Staňo Kozubík ◽  
Lenka Radová ◽  
Michaela Pešová ◽  
Kamila Réblová ◽  
Jakub Trizuljak ◽  
...  

2021 ◽  
Author(s):  
Xi Luo ◽  
Jamie L Maciaszek ◽  
Bryony A Thompson ◽  
Huei San Leong ◽  
Katherine Dixon ◽  
...  

Purpose: The Clinical Genome Resource (ClinGen) CDH1 Variant Curation Expert Panel (VCEP) developed specifications for CDH1 variant curation with a goal to resolve variants of uncertain significance (VUS) and with ClinVar conflicting interpretations for effective medical care. In addition, the CDH1 VCEP continues to update these specifications in keeping with evolving clinical practice and variant interpretation guidelines. Methods: CDH1 variant classification specifications were modified based on updated genetic testing clinical criteria, new recommendations from ClinGen, and expert knowledge from ongoing CDH1 variant curations. Trained biocurators curated 273 variants using updated CDH1 interpretation guidelines and incorporated published and unpublished data provided by diagnostic laboratories. All variants were reviewed by the ClinGen VCEP and classifications submitted to ClinVar. Results: Updated CDH1-specific variant interpretation guidelines include eleven major modifications since the initial specifications from 2018. Using the refined guidelines, 97% (36/37) of variants with ClinVar conflicting interpretations were resolved into benign, likely benign, likely pathogenic, or pathogenic, and 35% (15/43) of VUS were resolved into benign or likely benign. Overall, 88% (239/273) of curated variants had non-VUS classifications. Conclusion: The development and evolution of CDH1-specific criteria by the expert panel results in decreased uncertain and conflicting interpretations of variants in this clinically actionable gene.


Haematologica ◽  
2008 ◽  
Vol 93 (1) ◽  
pp. 155-156 ◽  
Author(s):  
K. Kirito ◽  
K. Sakoe ◽  
D. Shinoda ◽  
Y. Takiyama ◽  
K. Kaushansky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document