scholarly journals Principal component tests: applied to temporal gene expression data

2009 ◽  
Vol 10 (Suppl 1) ◽  
pp. S26
Author(s):  
Wensheng Zhang ◽  
Hong-Bin Fang ◽  
Jiuzhou Song
Author(s):  
Qiang Zhao ◽  
Jianguo Sun

Statistical analysis of microarray gene expression data has recently attracted a great deal of attention. One problem of interest is to relate genes to survival outcomes of patients with the purpose of building regression models for the prediction of future patients' survival based on their gene expression data. For this, several authors have discussed the use of the proportional hazards or Cox model after reducing the dimension of the gene expression data. This paper presents a new approach to conduct the Cox survival analysis of microarray gene expression data with the focus on models' predictive ability. The method modifies the correlation principal component regression (Sun, 1995) to handle the censoring problem of survival data. The results based on simulated data and a set of publicly available data on diffuse large B-cell lymphoma show that the proposed method works well in terms of models' robustness and predictive ability in comparison with some existing partial least squares approaches. Also, the new approach is simpler and easy to implement.


2014 ◽  
Vol 132 ◽  
pp. 42-53 ◽  
Author(s):  
D. Gutiérrez-Avilés ◽  
C. Rubio-Escudero ◽  
F. Martínez-Álvarez ◽  
J.C. Riquelme

2005 ◽  
Vol 03 (02) ◽  
pp. 303-316 ◽  
Author(s):  
ZHENQIU LIU ◽  
DECHANG CHEN ◽  
HALIMA BENSMAIL ◽  
YING XU

Kernel principal component analysis (KPCA) has been applied to data clustering and graphic cut in the last couple of years. This paper discusses the application of KPCA to microarray data clustering. A new algorithm based on KPCA and fuzzy C-means is proposed. Experiments with microarray data show that the proposed algorithms is in general superior to traditional algorithms.


2013 ◽  
Vol 11 (03) ◽  
pp. 1341006
Author(s):  
QIANG LOU ◽  
ZORAN OBRADOVIC

In order to more accurately predict an individual's health status, in clinical applications it is often important to perform analysis of high-dimensional gene expression data that varies with time. A major challenge in predicting from such temporal microarray data is that the number of biomarkers used as features is typically much larger than the number of labeled subjects. One way to address this challenge is to perform feature selection as a preprocessing step and then apply a classification method on selected features. However, traditional feature selection methods cannot handle multivariate temporal data without applying techniques that flatten temporal data into a single matrix in advance. In this study, a feature selection filter that can directly select informative features from temporal gene expression data is proposed. In our approach, we measure the distance between multivariate temporal data from two subjects. Based on this distance, we define the objective function of temporal margin based feature selection to maximize each subject's temporal margin in its own relevant subspace. The experimental results on synthetic and two real flu data sets provide evidence that our method outperforms the alternatives, which flatten the temporal data in advance.


Sign in / Sign up

Export Citation Format

Share Document