scholarly journals Local field potentials are induced by visually evoked spiking activity in macaque cortical area MT

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Moein Esghaei ◽  
Mohammad Reza Daliri ◽  
Stefan Treue
2015 ◽  
Vol 16 (Suppl 1) ◽  
pp. P194
Author(s):  
Jacob Yates ◽  
Evan Archer ◽  
Alexander C Huk ◽  
Il Memming Park

eNeuro ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. ENEURO.0178-19.2019 ◽  
Author(s):  
Junmo An ◽  
Taruna Yadav ◽  
John P. Hessburg ◽  
Joseph T. Francis

2013 ◽  
Vol 591 (21) ◽  
pp. 5291-5303 ◽  
Author(s):  
Stephan Waldert ◽  
Roger N. Lemon ◽  
Alexander Kraskov

2020 ◽  
Vol 32 (10) ◽  
pp. 2024-2035 ◽  
Author(s):  
Mikael Lundqvist ◽  
André M. Bastos ◽  
Earl K. Miller

Theta (2–8 Hz), alpha (8–12 Hz), beta (12–35 Hz), and gamma (>35 Hz) rhythms are ubiquitous in the cortex. However, there is little understanding of whether they have similar properties and functions in different cortical areas because they have rarely been compared across them. We record neuronal spikes and local field potentials simultaneously at several levels of the cortical hierarchy in monkeys. Theta, alpha, beta, and gamma oscillations had similar relationships to spiking activity in visual, parietal, and prefrontal cortices. However, the frequencies in all bands increased up the cortical hierarchy. These results suggest that these rhythms have similar inhibitory and excitatory functions across the cortex. We discuss how the increase in frequencies up the cortical hierarchy may help sculpt cortical flow and processing.


2013 ◽  
Vol 25 (1) ◽  
pp. 157-185 ◽  
Author(s):  
Jung Hoon Lee ◽  
Joji Tsunada ◽  
Yale E. Cohen

Local field potentials (LFPs) and spiking activity reflect different types of information procssing. For example, neurophysiological studies indicate that signal novelty in the ventrolateral prefrontal cortex is differentially represented by LFPs and spiking activity: LFPs habituate to repeated stimulus presentations, whereas spiking activity does not. The neural mechanisms that allow for this differential representation between LFPs and spiking activity are not clear. Here, we model and simulate LFPs and spiking activity of neurons in the ventrolateral prefrontal cortex in order to elucidate potential mechanisms underlying this differential representation. We demonstrate that dynamic negative-feedback loops cause LFPs to habituate in response to repeated presentations of the same stimulus while spiking activity is maintained. This disassociation between LFPs and spiking activity may be a mechanism by which LFPs code stimulus novelty, whereas spiking activity carries abstract information, such as category membership and decision-related activity.


Sign in / Sign up

Export Citation Format

Share Document