scholarly journals Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation

2013 ◽  
Vol 8 (1) ◽  
pp. 353 ◽  
Author(s):  
Min Lai ◽  
Xiaodong Zhang ◽  
Fengzhou Fang
2000 ◽  
Vol 634 ◽  
Author(s):  
R. Tarumi ◽  
A. Ogura ◽  
M. Shimojo ◽  
K. Takashima ◽  
Y. Higo

ABSTRACTAn NTP ensemble molecular dynamics simulation was carried out to investigate the mechanism of nano-sized crystallization during plastic deformation in an amorphous metal. The atomic system used in this study was Ni single component. The total number of Ni atoms was 1372. The Morse type inter-atomic potential was employed. An amorphous model was prepared by a quenching process from the liquid state. Pure shear stresses were applied to the amorphous model at a temperature of 50 K. At applied stresses of less than 2.4GPa, a linear relation between shear stress and shear strain was observed. However, at an applied shear stress of 2.8 GPa, the amorphous model started to deform significantly until shear strain reached to 0.78. During this deformation process, phase transformation from amorphous into crystalline structure (fcc) was observed. Furthermore, an orientation relationship between shear directions and crystalline phase was obtained, that is, two shear directions are parallel to a (111) of the fcc structure. This crystallographic orientation relationship agreed well with our experimental result of Ni-P amorphous alloy. Mechanisms of phase transformation from amorphous into crystalline structure were discussed.


Sign in / Sign up

Export Citation Format

Share Document