scholarly journals Delay-dependent exponential stability for Markovian jumping stochastic Cohen-Grossberg neural networks with p-Laplace diffusion and partially known transition rates via a differential inequality

2013 ◽  
Vol 2013 (1) ◽  
Author(s):  
Ruofeng Rao ◽  
Shouming Zhong ◽  
Xiongrui Wang
2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Ruofeng Rao ◽  
Xiongrui Wang ◽  
Shouming Zhong ◽  
Zhilin Pu

The robust exponential stability of delayed fuzzy Markovian-jumping Cohen-Grossberg neural networks (CGNNs) with nonlinearp-Laplace diffusion is studied. Fuzzy mathematical model brings a great difficulty in setting up LMI criteria for the stability, and stochastic functional differential equations model with nonlinear diffusion makes it harder. To study the stability of fuzzy CGNNs with diffusion, we have to construct a Lyapunov-Krasovskii functional in non-matrix form. But stochastic mathematical formulae are always described in matrix forms. By way of some variational methods inW1,p(Ω),Itôformula, Dynkin formula, the semi-martingale convergence theorem, Schur Complement Theorem, and LMI technique, the LMI-based criteria on the robust exponential stability and almost sure exponential robust stability are finally obtained, the feasibility of which can efficiently be computed and confirmed by computer MatLab LMI toolbox. It is worth mentioning that even corollaries of the main results of this paper improve some recent related existing results. Moreover, some numerical examples are presented to illustrate the effectiveness and less conservatism of the proposed method due to the significant improvement in the allowable upper bounds of time delays.


2014 ◽  
Vol 989-994 ◽  
pp. 1877-1882 ◽  
Author(s):  
Liang Dong Guo ◽  
Jin Nie ◽  
You Shan Zhang

The problem of robustly globally exponential stability in the mean square is investigated for stochastic uncertain discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays and Markovian jumping parameters. The uncertainties are assumed to be the linear fractional form. By using Lyapunov-Krasovskii functional (LKF) method and some novel technique, a delay-dependent exponential stability criterion is established in terms of linear matrix inequalities (LMIs). A numerical example is provided to show the effectiveness and the improvement of the proposed methods.


Author(s):  
Qianhong Zhang ◽  
Lihui Yang ◽  
Daixi Liao

Existence and exponential stability of a periodic solution for fuzzy cellular neural networks with time-varying delays Fuzzy cellular neural networks with time-varying delays are considered. Some sufficient conditions for the existence and exponential stability of periodic solutions are obtained by using the continuation theorem based on the coincidence degree and the differential inequality technique. The sufficient conditions are easy to use in pattern recognition and automatic control. Finally, an example is given to show the feasibility and effectiveness of our methods.


Sign in / Sign up

Export Citation Format

Share Document