scholarly journals Asymmetry in the brain influenced the neurological deficits and infarction volume following the middle cerebral artery occlusion in rats

2008 ◽  
Vol 4 (1) ◽  
pp. 57 ◽  
Author(s):  
Huanmin Gao ◽  
Meizeng Zhang
2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Dong-Ju Park ◽  
Ju-Bin Kang ◽  
Fawad-Ali Shah ◽  
Phil-Ok Koh

Abstract Background Calcium is a critical factor involved in modulation of essential cellular functions. Parvalbumin is a calcium buffering protein that regulates intracellular calcium concentrations. It prevents rises in calcium concentrations and inhibits apoptotic processes during ischemic injury. Quercetin exerts potent antioxidant and anti-apoptotic effects during brain ischemia. We investigated whether quercetin can regulate parvalbumin expression in cerebral ischemia and glutamate toxicity-induced neuronal cell death. Adult male rats were treated with vehicle or quercetin (10 mg/kg) 30 min prior to middle cerebral artery occlusion (MCAO) and cerebral cortical tissues were collected 24 h after MCAO. We used various techniques including Western blot, reverse transcription-PCR, and immunohistochemical staining to elucidate the changes of parvalbumin expression. Results Quercetin ameliorated MCAO-induced neurological deficits and behavioral changes. Moreover, quercetin prevented MCAO-induced a decrease in parvalbumin expression. Conclusions These findings suggest that quercetin exerts a neuroprotective effect through regulation of parvalbumin expression.


2007 ◽  
Vol 412 (2) ◽  
pp. 114-117 ◽  
Author(s):  
John C. Ashton ◽  
Rosanna M.A. Rahman ◽  
Shiva M. Nair ◽  
Brad A. Sutherland ◽  
Michelle Glass ◽  
...  

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Alexander Akhmedov ◽  
Remo D Spescha ◽  
Francesco Paneni ◽  
Giovani G Camici ◽  
Thomas F Luescher

Background— Stroke is one of the most common causes of death and long term disability worldwide primarily affecting the elderly population. Lectin-like oxidized LDL receptor 1 (LOX-1) is the receptor for oxidized LDL identified in endothelial cells. Binding of OxLDL to LOX-1 induces several cellular events in endothelial cells, such as activation of transcription factor NF-kB, upregulation of MCP-1, and reduction in intracellular NO. Accumulating evidence suggests that LOX-1 is involved in endothelial dysfunction, inflammation, atherogenesis, myocardial infarction, and intimal thickening after balloon catheter injury. Interestingly, a recent study demonstrated that acetylsalicylic acid (aspirin), which could prevent ischemic stroke, inhibited Ox-LDL-mediated LOX-1 expression in human coronary endothelial cells. The expression of LOX-1 was increased at a transient ischemic core site in the rat middle cerebral artery occlusion model. These data suggest that LOX-1 expression induces atherosclerosis in the brain and is the precipitating cause of ischemic stroke. Therefore, the goal of the present study was to investigate the role of endothelial LOX-1 in stroke using experimental mouse model. Methods and Results— 12-week-old male LOX-1TG generated recently in our group and wild-type (WT) mice were applied for a transient middle cerebral artery occlusion (MCAO) model to induce ischemia/reperfusion (I/R) brain injury. LOX-1TG mice developed 24h post-MCAO significantly larger infarcts in the brain compared to WT (81.51±8.84 vs. 46.41±10.13, n=7, p < 0.05) as assessed morphologically using Triphenyltetrazolium chloride (TTC) staining. Moreover, LOX-1TG showed higher neurological deficit in RotaRod (35.57±8.92 vs. 66.14±10.63, n=7, p < 0.05) and Bederson tests (2.22±0.14 vs. 1.25±0.30, n=9-12, p < 0.05) - two experimental physiological tests for neurological function. Conclusions— Thus, our data suggest that LOX-1 plays a critical role in the ischemic stroke when expressed at unphysiological levels. Such LOX-1 -associated phenotype could be due to the endothelial dysfunction. Therefore, LOX-1 may represent novel therapeutic targets for preventing ischemic stroke.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1747 ◽  
Author(s):  
Nan Li ◽  
Lingling Feng ◽  
Yujun Tan ◽  
Yan Xiang ◽  
Ruoqi Zhang ◽  
...  

The dry root of Scutellaria baicalensis, has traditionally been applied in the treatment of cerebral ischemia in Chinese clinics. Baicalin (BA) is considered the key ingredient in it for the brain protection effects. The bioavailability of BA is very low because of its poor lipid and water solubility, which limits the therapeutic effects and clinical application. The aim of the present study was to develop a novel BA-loaded liposome (BA-LP) formulation to improve the drug lipophilicity and further to enhance the drug-concentration in the brain tissues. This study is also designed to investigate the pharmacokinetics of BA in the pathological conditions of stroke and evaluate the pharmacokinetic differences of BA caused by stroke after intravenous administration with BA and BA-LP. In this study, the novel BA-LP prepared in early stage were characterized by morphology, size, zeta potential, encapsulation rate and the in vitro release. The pharmacokinetics and biodistribution of BA and BA-LP were investigated by intravenous administration in rats with middle cerebral artery occlusion (MCAO) model and normal group respectively. BA-LP had a mean particle size of 160–190 nm, zeta potential of −5.7 mV, and encapsulation efficiency of 42 ± 1%. The BA-LP showed a sustained-release behavior, the in vitro drug-release kinetic model of BA-LP fit well with the biphasic dynamic model equation: Q = 1 − (60.12e0.56t − 59.08e0.0014t). Pharmacokinetic behavior in MCAO rats is not consistent with that of normal rats. The middle cerebral artery occlusion rats got higher Cmax and AUC0–t, which were about 1.5–2 times to normal rats both in BA and liposome groups. In addition, it got especially higher distribution in brain, while BA were not detected in brain tissues on normal rats. The Cmax and AUC0–t values were significantly greater with liposome than BA on both normal and MCAO rats. The tissue distribution behavior was significantly altered in the case of liposome administrated in comparison with BA, which the concentrations in the heart, liver, spleen, lungs and brain were all increased after administrated liposome, but decreased in kidneys. The TI values showed that the target of liposome was improved especially to heart, spleen and brain, and the brain’s target was higher in striatum and cerebellum. In conclusion, BA-LP might be a potential drug delivery system to improve the therapeutic efficacy of BA. In addition, these results also suggest that the pathological damages of ischemia-reperfusion have a significant impact on the pharmacokinetic traits of BA.


Stroke ◽  
2019 ◽  
Vol 50 (4) ◽  
pp. 1021-1025 ◽  
Author(s):  
Huachen Huang ◽  
Mohammad Iqbal H. Bhuiyan ◽  
Tong Jiang ◽  
Shanshan Song ◽  
Sandhya Shankar ◽  
...  

Background and Purpose— Inhibition of brain NKCC1 (Na + -K + -Cl − cotransporter 1) with bumetanide (BMT) is of interest in ischemic stroke therapy. However, its poor brain penetration limits the application. In this study, we investigated the efficacy of 2 novel NKCC1 inhibitors, a lipophilic BMT prodrug STS5 (2-(Dimethylamino)ethyl 3-(butylamino)-4-phenoxy-5-sulfamoyl-benzoate;hydrochloride) and a novel NKCC1 inhibitor STS66 (3-(Butylamino)-2-phenoxy-5-[(2,2,2-trifluoroethylamino)methyl]benzenesulfonamide), on reducing ischemic brain injury. Methods— Large-vessel transient ischemic stroke in normotensive C57BL/6J mice was induced with 50-min occlusion of the middle cerebral artery and reperfusion. Focal, permanent ischemic stroke in angiotensin II (Ang II)–induced hypertensive C57BL/6J mice was induced by permanent occlusion of distal branches of middle cerebral artery. A total of 206 mice were randomly assigned to receive vehicle DMSO, BMT, STS5, or STS66. Results— Poststroke BMT, STS5, or STS66 treatment significantly decreased infarct volume and cerebral swelling by ≈40% to 50% in normotensive mice after transient middle cerebral artery occlusion, but STS66-treated mice displayed better survival and sensorimotor functional recovery. STS5 treatment increased the mortality. Ang II–induced hypertensive mice exhibited increased phosphorylatory activation of SPAK (Ste20-related proline alanine-rich kinase) and NKCC1, as well as worsened infarct and neurological deficit after permanent distal middle cerebral artery occlusion. Conclusions— The novel NKCC1 inhibitor STS66 is superior to BMT and STS5 in reducing ischemic infarction, swelling, and neurological deficits in large-vessel transient ischemic stroke, as well as in permanent focal ischemic stroke with hypertension comorbidity.


Sign in / Sign up

Export Citation Format

Share Document