scholarly journals Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems

2013 ◽  
Vol 7 (1) ◽  
pp. 76 ◽  
Author(s):  
Maria Rodriguez-Fernandez ◽  
Markus Rehberg ◽  
Andreas Kremling ◽  
Julio R Banga
2021 ◽  
Author(s):  
Leonard Schmiester ◽  
Daniel Weindl ◽  
Jan Hasenauer

AbstractMotivationUnknown parameters of dynamical models are commonly estimated from experimental data. However, while various efficient optimization and uncertainty analysis methods have been proposed for quantitative data, methods for qualitative data are rare and suffer from bad scaling and convergence.ResultsHere, we propose an efficient and reliable framework for estimating the parameters of ordinary differential equation models from qualitative data. In this framework, we derive a semi-analytical algorithm for gradient calculation of the optimal scaling method developed for qualitative data. This enables the use of efficient gradient-based optimization algorithms. We demonstrate that the use of gradient information improves performance of optimization and uncertainty quantification on several application examples. On average, we achieve a speedup of more than one order of magnitude compared to gradient-free optimization. Additionally, in some examples, the gradient-based approach yields substantially improved objective function values and quality of the fits. Accordingly, the proposed framework substantially improves the parameterization of models from qualitative data.AvailabilityThe proposed approach is implemented in the open-source Python Parameter EStimation TOolbox (pyPESTO). All application examples and code to reproduce this study are available at https://doi.org/10.5281/zenodo.4507613.


2001 ◽  
Author(s):  
Jie Xiao ◽  
Bohdan T. Kulakowski

Abstract Vehicle dynamic models include parameters that qualify the dependence of input forces and moments on state and control variables. The accuracy of the model parameter estimates is important for modeling, simulation, and control. In general, the most accurate method for determining values of model parameters is by direct measurement. However, some parameters of vehicle dynamics, such as suspension damping or moments of inertia, are difficult to measure accurately. This study aims at establishing an efficient and accurate parameter estimation method for developing dynamic models for transit buses, such that this method can be easily implemented for simulation and control design purposes. Based on the analysis of robustness, as well as accuracy and efficiency of optimization techniques, a parameter estimation method that integrates Genetic Algorithms and the Maximum Likelihood Estimation is proposed. Choices of output signals and estimation criterion are discussed involving an extensive sensitivity analysis of the predicted output with respect to model parameters. Other experiment-related aspects, such as imperfection of data acquisition, are also considered. Finally, asymptotic Cramer-Rao lower bounds for the covariance of estimated parameters are obtained. Computer simulation results show that the proposed method is superior to gradient-based methods in accuracy, as well as robustness to the initial guesses and measurement uncertainty.


Technometrics ◽  
1968 ◽  
Vol 10 (1) ◽  
pp. 145-160 ◽  
Author(s):  
William J. Hill ◽  
William G. Hunter ◽  
Dean W. Wichern

Sign in / Sign up

Export Citation Format

Share Document