scholarly journals Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production

2012 ◽  
Vol 5 (1) ◽  
Author(s):  
Shuobo Shi ◽  
Juan Octavio Valle-Rodríguez ◽  
Sakda Khoomrung ◽  
Verena Siewers ◽  
Jens Nielsen
2012 ◽  
Vol 5 (1) ◽  
pp. 7 ◽  
Author(s):  
Shuobo Shi ◽  
Juan Octavio Valle-Rodriguez ◽  
Sakda Khoomrung ◽  
Verena Siewers ◽  
Jens Nielsen

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0130542 ◽  
Author(s):  
Soracom Chardwiriyapreecha ◽  
Kunio Manabe ◽  
Tomoko Iwaki ◽  
Miyuki Kawano-Kawada ◽  
Takayuki Sekito ◽  
...  

1998 ◽  
Vol 332 (2) ◽  
pp. 583-589 ◽  
Author(s):  
Nathalie TIJET ◽  
Christian HELVIG ◽  
Franck PINOT ◽  
Renaud Le BOUQUIN ◽  
Agnès LESOT ◽  
...  

The chemical tagging of a cytochrome P-450-dependent lauric acid ω-hydroxylase from clofibrate-treated Vicia sativa seedlings with [1-14C]11-dodecynoic acid allowed the isolation of a full-length cDNA designated CYP94A1. We describe here the functional expression of this novel P-450 in two Saccharomyces cerevisiae strains overproducing their own NADPH-cytochrome P-450 reductase or a reductase from Arabidopsis thaliana. The results show a much higher efficiency of the yeast strain overproducing the plant reductase compared with the yeast strain overproducing its own reductase for expressing CYP94A1. The methyl end of saturated (from C-10 to C-16) and unsaturated (C18:1, C18:2 and C18:3) fatty acids was mainly oxidized by CYP94A1. Both E/Zand Z/E configurations of 9,12-octadecadienoic acids were ω-hydroxylated. Lauric, myristic and linolenic acids were oxidized with the highest turnover rate (24 min-1). The strong regioselectivity of CYP94A1 was clearly shifted with sulphur-containing substrates, since both 9- and 11-thia laurate analogues were sulphoxidized. Similar to animal ω-hydroxylases, this plant enzyme was strongly induced by clofibrate treatment. Rapid CYP94A1 transcript accumulation was detected less than 20 min after exposure of seedlings to the hypolipidaemic drug. The involvement of CYP94A1 in the synthesis of cutin monomers and fatty acid detoxification is discussed.


2018 ◽  
Vol 39 (4) ◽  
pp. 474-482
Author(s):  
Hoang Thi Le Thuong ◽  
Nguyen Quang Hao ◽  
Tran Thi Thuy

Eight yeast strains (denoted as D1 to D8) were isolated from samples of natural fermented pineapple. Strain D8 showed highest alcoholic production at low pH and special aroma of pineapple has been chosen for further study. Taxonomic characterization of strain D8 using morphological, biochemical and molecular biological studies confirmed that strain D8  belong to Saccharomycetaceae family, Saccharomycetales order and Saccharomyces cerevisiae species. Therefore, we named this strain as Saccharomyces cerevisiae D8 for further study on Brandy production from pineapple. Citation: Hoang Thi Le Thuong, Nguyen Quang Hao, Tran Thi Thuy, 2017. Taxonomic characterization and identification of Saccharomyces cerevisiae D8 for brandy production from pineapple. Tap chi Sinh hoc, 39(4): 474- 482. DOI: 10.15625/0866-7160/v39n4.10864.*Corresponding author: [email protected] Received 5 December 2016, accepted 12 August 2017


Sign in / Sign up

Export Citation Format

Share Document