scholarly journals Characteristic activity and migration of episodic tremor and slow-slip events in central Japan

2009 ◽  
Vol 61 (7) ◽  
pp. 853-862 ◽  
Author(s):  
Kazushige Obara ◽  
Shutaro Sekine
2020 ◽  
Author(s):  
Aitaro Kato ◽  
Shigeki Nakagawa

Abstract To improve our understanding of the long-term behavior of low-frequency earthquakes (LFEs) along the tremor belt of the Nankai subduction zone, we applied a matched filter technique to continuous seismic data recorded by a dense and highly sensitive seismic network over an 11year window, April 2004 to August 2015. We detected a total of ~510,000 LFEs, or ~23× the number of LFEs in the JMA catalog for the same period. During long-term slow slip events (SSEs) in the Bungo Channel, a series of migrating LFEbursts intermittently occurred along the fault-strike direction, with slow hypocenter propagation. Elastic energy released by long-term SSEs appears to control the extent of LFE activity. We identify slowlymigrating fronts of LFEs during major episodic tremor and slip (ETS)events, which extend over distances of up to 100 km and follow diffusion-like patterns of spatial evolution with a diffusion coefficient of ~104 m2/s. This migration pattern closely matches the spatio-temporal evolution of tectonictremors reported by previous studies. At shorter distances, up to 15 km, we discovered rapid diffusion-like migrationof LFEs with a coefficient of ~105 m2/s. We also recognize that rapid migration of LFEs occurred intermittently in many streaks during major ETS episodes. These observations suggest that slow slip transients contain a multitude of smaller, temporally clustered fault slip events whose evolution is controlled by a diffusional process.


2019 ◽  
Vol 5 (2) ◽  
pp. eaav3274 ◽  
Author(s):  
Baptiste Rousset ◽  
Roland Bürgmann ◽  
Michel Campillo

Episodic tremor and accompanying slow slip are observed at the down-dip edge of subduction seismogenic zones. While tremors are the seismic signature of this phenomenon, they correspond to a small fraction of the moment released; thus, the associated fault slip can be quantified only by geodetic observations. On continental strike-slip faults, tremors have been observed in the roots of the Parkfield segment of the San Andreas fault. However, associated transient aseismic slip has never been detected. By making use of the timing of transient tremor activity and the dense Parkfield-area global positioning system network, we can detect deep slow slip events (SSEs) at 16-km depth on the Parkfield segment with an average moment equivalent toMw4.90 ± 0.08. Characterization of transient SSEs below the Parkfield locked asperity, at the transition with the creeping section of the San Andreas fault, provides new constraints on the seismic cycle in this region.


2021 ◽  
Author(s):  
Rishav Mallick ◽  
Aron J. Meltzner ◽  
Louisa L. H. Tsang ◽  
Eric O. Lindsey ◽  
Lujia Feng ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document