gnss network
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 68)

H-INDEX

11
(FIVE YEARS 3)

GPS Solutions ◽  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Zohreh Adavi ◽  
Robert Weber ◽  
Marcus Franz Glaner

AbstractWater vapor is one of the most variable components in the earth's atmosphere and has a significant role in forming clouds, rain and snow, air pollution, and acid rain. Therefore, increasing the accuracy of estimated water vapor can lead to more accurate predictions of severe weather, upcoming storms, and natural hazards. In recent years, GNSS has turned out to be a valuable tool for remotely sensing the atmosphere. In this context, GNSS tomography evolved to an extremely promising technique to reconstruct the spatiotemporal structure of the troposphere. However, locating dual-frequency (DF) receivers with a spatial resolution of a few tens of kilometers sufficient for GNSS tomography is not economically feasible. Therefore, in this research, the feasibility of using single-frequency (SF) observations in GNSS tomography as an alternative approach has been investigated. The algebraic reconstruction technique (ART) and the total variation (TV) method are examined to reconstruct a regularized solution. The accuracy of the reconstructed water vapor distribution model using low-cost receivers is verified by radiosonde measurements in the area of the EPOSA (Echtzeit Positionierung Austria) GNSS network, which is mostly located in the east part of Austria for the period DoY 232–245, 2019. The results indicate that irrespective of the investigated ART and TV techniques, the quality of the reconstructed wet refractivity field is comparable for both SF and DF schemes. However, in the SF scheme the MAE with respect to the radiosonde measurements for ART + NWM and ART + TV can reach up to 10 ppm during noontime. Despite that, all statistical results demonstrate the degradation of the retrieved wet refractivity field of only 10–40% when applying the SF scheme in the presence of the initial guess.


2021 ◽  
Vol 6 (24) ◽  
pp. 161-173
Author(s):  
Nur Adilla Zulkifli ◽  
Ami Hassan Md Din ◽  
Wan Anom Wan Aris ◽  
Zheng Yong Chien

The Geocentric Datum of Malaysia (GDM200) is realised with respect to International Terrestrial Reference Frame (ITRF) 2000 at epoch 2nd January 2000. In comparison with the 2000 frame, ITRF2014 has significant improvement in terms of its definition and realisation. Moreover, several great earthquakes that struck the Indonesian region for the past decades have deformed the tectonic plate, resulting in a shifted GDM2000. These earthquakes, followed by post-seismic activities, has caused GDM2000 to become obsolete. Following that, the Department of Survey and Mapping Malaysia (DSMM) has taken the initiative to revise the coordinate of Malaysia Real-Time Kinematic Global Navigation Satellite Systems (GNSS) Network (MyRTKnet) stations in GDM2000 into a new set of coordinates. Therefore, this paper presents an effort to analyse the differences between coordinates in GDM2000 based on 2009 and 2016 revisions. In order to measure the discrepancy, forty-seven (47) MyRTKnet stations in Peninsular Malaysia were chosen to estimate the differences between the two (2) revisions. The coordinates obtained from MyRTKnet stations were then projected into Rectified Skewed Orthomorphic (RSO) coordinate system to compute the differences in horizontal position and ellipsoidal height. The finding showed that the discrepancy ranges from 0.8 to 11.8 cm, with the smallest values at SETI station and the biggest value at KRAI station. Meanwhile, for the differences in ellipsoidal height, LIPI station has the biggest value of 8.1 cm, followed by the smallest value of 0.4 cm at SETI station. In conclusion, as the differences in revision gave impact on the changes of coordinates of MyRTKnet stations in Peninsular Malaysia, the frequent revision of GDM2000 should also consider the latest frame to give better positional accuracy, and a proper datum transformation (ITRF2014 to ITRF2000) need to be implemented for mapping purposes.


Navigation ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 751-758
Author(s):  
Susumu Saito ◽  
Keisuke Hosokawa ◽  
Jun Sakai ◽  
Ichiro Tomizawa

2021 ◽  
Vol 13 (22) ◽  
pp. 4649
Author(s):  
Filippo Greco ◽  
Federica Riguzzi ◽  
Giovanna Berrino

In this study we present and discuss gravity and ground deformation variations, at different time scales, observed in a wide mesh absolute gravity and GNSS network set up in central Italy. The network was installed in the area affected by the 2009 (L’Aquila; Mw 6.1) and 2016 (Amatrice-Norcia; Mw 6.0 and 6.5) seismic activity, in order to verify if gravity and ground deformation variations could be related to seismic effects. The new network includes 5 stations distributed between the Lazio, Umbria, and Abruzzo regions. From 2018 to 2020 three campaigns were carried out using the transportable Micro-g LaCoste FG5#238 and the portable Micro-g LaCoste A10#39 absolute gravimeters and completed with two simultaneous GNSS measurements. Topographic instruments, measurement and analysis techniques enabling accurate measurements in the positioning of the stations and to control their variations over time were applied. The high reliability and accuracy of the absolute gravity data gathered, after being corrected for known effects, showed a negative short-term (2018–2020) pattern throughout the area, up to −30 µGal. Since some stations of the new network coincided with benchmarks already measured in the past, an analysis of long-term gravity changes was carried out and a fair degree of stability was observed in two stations, while positive large variations, of approximately 70 and 157 µGal, were recorded in the other two stations in the time intervals 1954–2020 and 2005–2010, respectively. On the other hand, variations highlighted by GNSS height measurements were all below 3 cm. Here, the first long-lasting gravity measurements carried out with absolute gravimeters in a seismic area in Italy are presented, providing meaningful geophysical information. The obtained results, in terms of availability of a combined absolute gravity and GNSS network, definition of data acquisition and analysis procedures, as well as creation of a high quality data archive, lay the foundations for a multidisciplinary approach towards improving the knowledge of this seismogenetic area of Italy.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7413
Author(s):  
Andrzej Stateczny ◽  
Cezary Specht ◽  
Mariusz Specht ◽  
David Brčić ◽  
Alen Jugović ◽  
...  

Hydrographic surveys, in accordance with the International Hydrographic Organization (IHO) S-44 standard, can be carried out in the following five orders: Exclusive, Special, 1a, 1b and 2, for which minimum accuracy requirements for the applied positioning system have been set out. They are as follows, respectively: 1, 2, 5, 5 and 20 m, with a confidence level of 95% in two-dimensional space. The Global Navigation Satellite System (GNSS) network solutions (accuracy: 2–3 cm (p = 0.95)) and the Differential Global Positioning System (DGPS) (accuracy: 1–2 m (p = 0.95)) are now commonly used positioning methods in hydrography. Due to the fact that a new order of hydrographic surveys has appeared in the IHO S-44 standard from 2020—Exclusive, looking at the current positioning accuracy of the DGPS system, it is not known whether it can be used in it. The aim of this article is to determine the usefulness of GNSS/Inertial Navigation Systems (INS) for hydrographic surveys. During the research, the following two INSs were used: Ekinox2-U and Ellipse-D by the SBG Systems, which were supported by DGPS and Real Time Kinematic (RTK) receivers. GNSS/INS measurements were carried out during the manoeuvring of the Autonomous/Unmanned Surface Vehicle (ASV/USV) named “HydroDron” on Kłodno lake in Zawory. The acquired data were processed using the mathematical model that allows us to assess whether any positioning system at a given point in time meets (or not) the accuracy requirements for each IHO order. The model was verified taking into account the historical and current test results of the DGPS and RTK systems. Tests have confirmed that the RTK system meets the requirements of all the IHO orders, even in situations where it is not functioning 100% properly. Moreover, it was proven that the DGPS system does not only meet the requirements provided for the most stringent IHO order, i.e., the Exclusive Order (horizontal position error ≤ 1 m (p = 0.95)). Statistical analyses showed that it was only a few centimetres away from meeting this criterion. Therefore, it can be expected that soon it will be used in all the IHO orders.


2021 ◽  
Vol 16 ◽  
pp. 1-15
Author(s):  
Ami Hassan Md Din ◽  
Nur Adawiyyah Maziyyah Abu Bakar ◽  
Nur Adilla Zulkifli ◽  
Muhammad Asyran Che Amat ◽  
Mohammad Hanif Hamden

Virtual Reference Station (VRS), Master-Auxiliary Corrections (MAX) and Individualised Master-Auxiliary Corrections (IMAX) are among the Network Real-Time Kinematic (NRTK) techniques supported by Malaysia Real-Time Kinematic GNSS Network (MyRTKnet) in rendering network-based solution to users. However, different network corrections have different limitations due to different manufacturers hence offering varieties output. Therefore, this study was conducted to assess the accuracy of VRS, MAX and IMAX for geodetic and plane coordinates. Three (3) techniques were implemented to observe points at Universiti Teknologi Malaysia (UTM) and cadastral lot in Johor Bahru. The results were analysed based on assessment with known values and baseline lengths. The findings showed that the accuracy of all techniques ranged from 0.16 to 3.61 cm (horizontal) and 2.86 to 6.20 cm (vertical) for geodetic coordinates. For plane coordinates, the values varied from 0.3 to 4.22 cm (horizontal) and 2.1 to 8.26 cm (vertical). IMAX provided the worst accuracy compared to others due to incompatibility of Radio Technical Commission for Maritime Services (RTCM) format. Moreover, the accuracy decreases as the baseline length between rover and reference station increases. In conclusion, VRS and MAX yielded acceptable accuracy and can be safely chosen rather than IMAX. Furthermore, the baseline length for applications involving high accuracy measurement should also be considered.


2021 ◽  
Vol 95 (11) ◽  
Author(s):  
Germán Olivares-Pulido ◽  
Manuel Hernández-Pajares ◽  
Haixia Lyu ◽  
Shengfeng Gu ◽  
Alberto García-Rigo ◽  
...  

AbstractIn this manuscript, we introduce the Ionospheric Tomographic Common Clock (ITCC) model of undifferenced uncombined GNSS measurements. It is intended for improving the Wide Area precise positioning in a consistent and simple way in the multi-GNSS context, and without the need of external precise real-time products. This is the case, in particular, of the satellite clocks, which are estimated at the Wide Area GNSS network Central Processing Facility (CPF) referred to the reference receiver one; and the precise realtime ionospheric corrections, simultaneously computed under a voxel-based tomographic model with satellite clocks and other geodetic unknowns, from the uncombined and undifferenced pseudoranges and carrier phase measurements at the CPF from the Wide Area GNSS network area. The model, without fixing the carrier phase ambiguities for the time being (just constraining them by the simultaneous solution of both ionospheric and geometric components of the uncombined GNSS model), has been successfully applied and assessed against previous precise positioning techniques. This has been done by emulating real-time conditions for Wide Area GPS users during 2018 in Poland.


Sign in / Sign up

Export Citation Format

Share Document