scholarly journals Seiches and the slide/seiche dynamics; subcritical and supercritical subaquous mass flows and their deposits. Examples from Swiss Lakes

2021 ◽  
Vol 114 (1) ◽  
Author(s):  
Christoph Siegenthaler

AbstractFour historically documented large and potentially dangerous lacustrine waves in Swiss lakes show that these waves have been seiches (standing waves) triggered by sublacustrine slides; a statement which is in accordance with the experience of seismologists who see earthquakes triggering seiches in lakes. Nevertheless, large historical waves in Switzerland have recently been modeled as progressive shallow water waves (tsunamis), probably because the slide/seiche dynamics are not known, and experiments with subaquatic slides fail to generate seiches in test–flumes. It appears that these tests exhibit a small shear–energy/slide–energy ratio ε, if compared with the situation in lakes. These facts incite a shear–stress lemma that states that ε is the constituent factor for the slide/seiche coupling. The structure of the subaqueous mass flow deposit (MFD) in lakes Lucerne and Geneva suggests the occurrence of subcritical and of supercritical slide flows. The former would generate a contortite, a MFD with contorted bedding, the latter a debrite (mudclast conglomerate). Potential slide energy considerations are used for an estimation of the amplitudes of large seiches produced by subaquatic slides, a proceeding that yields partly similar and partly very different results, as compared with numerical tsunami simulations.

Author(s):  
Shin-ichi AOKI ◽  
Tomoki HAMANO ◽  
Taishi NAKAYAMA ◽  
Eiichi OKETANI ◽  
Takahiro HIRAMATSU ◽  
...  

2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Kenan Šehić ◽  
Henrik Bredmose ◽  
John D. Sørensen ◽  
Mirza Karamehmedović

2000 ◽  
Vol 24 (10) ◽  
pp. 649-661 ◽  
Author(s):  
Mohamed Atef Helal

This paper is mainly concerned with the motion of an incompressible fluid in a slowly rotating rectangular basin. The equations of motion of such a problem with its boundary conditions are reduced to a system of nonlinear equations, which is to be solved by applying the shallow water approximation theory. Each unknown of the problem is expanded asymptotically in terms of the small parameterϵwhich generally depends on some intrinsic quantities of the problem of study. For each order of approximation, the nonlinear system of equations is presented successively. It is worthy to note that such a study has useful applications in the oceanography.


2010 ◽  
Vol 3 (4) ◽  
pp. 208-214 ◽  
Author(s):  
M. Moradi Larmaei ◽  
Tew-Fik Mahdi

Sign in / Sign up

Export Citation Format

Share Document