scholarly journals Deficiency in Aim2 affects viability and calcification of vascular smooth muscle cells from murine aortas and angiotensin-II induced aortic aneurysms

2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Markus Wortmann ◽  
Muhammad Arshad ◽  
Maani Hakimi ◽  
Dittmar Böckler ◽  
Susanne Dihlmann

Abstract Background Phenotypic transformation of vascular smooth muscle cells is a key element in vascular remodeling and aortic aneurysm growth. Previously, deletion of several inflammasome components decreased formation of aortic aneurysm (AA) in the Angiotensin II (AngII) -induced mouse model. We hypothesized that the inflammasome sensor Absent in melanoma 2 (Aim2) might affect the phenotype of vascular smooth muscle cells (VSMC), thereby reducing AA formation. Methods Aim2−/− mice and wild-type (WT) C57Bl/6 J mice were used as an animal model. VSMC were isolated from 6 months old mice and grown in vitro. Young (passage 3–5) and senescent (passage 7–12) cells were analyzed in vitro for calcification in mineralization medium by Alizarin Red S staining. Expression of calcification and inflammatory markers were studied by real-time RT-PCR and Western blotting, release of cytokines was determined by ELISA. To induce AA, osmotic mini-pumps loaded with AngII (1500 ng/kg bodyweight/min) were implanted for 28 days in male mice at 6 months of age. Results Compared with VSMC from WT mice, VSMC isolated from Aim2−/− mice were larger, less viable, and underwent stronger calcification in mineralization medium, along with induction of Bmp4 and repression of Tnfsf11/Rankl gene expression. In addition, Aim2 deficiency was associated with reduced inflammasome gene expression and release of Interleukin-6. Using the mouse model of AngII induced AA, Aim2 deficiency reduced AA incidence to 48.4% (15/31) in Aim2−/− mice versus 76.5% (13/17) in WT mice. In contrast to Aim2−/− mice, AA from WT mice expressed significantly increased levels of alpha-smooth muscle actin/Acta2, indicating tissue remodeling. Reduced cell proliferation in Aim2−/− mice was indicated by significantly increased p16ink4a/Cdkn2a expression in untreated and AngII-infused aortas, and by significantly lower amounts of proliferating (Ki67 positive) VSMC in AngII-infused Aim2−/− mice. Conclusions Our results suggest a role for Aim2 in regulating VSMC proliferation and transition to an osteoblast-like or osteoclast-like phenotype, thereby modulating the response of VSMC in aortic remodeling and AA formation.

2020 ◽  
Author(s):  
Markus Wortmann ◽  
Muhammad Arshad ◽  
Maani Hakimi ◽  
Dittmar Böckler ◽  
Susanne Dihlmann

Abstract Background: Phenotypic transformation of vascular smooth muscle cells is a key element in vascular remodeling and aortic aneurysm growth. Previously, deletion of several inflammasome components decreased formation of aortic aneurysm (AA) in the Angiotensin II (AngII) -induced mouse model. We hypothesized that the inflammasome sensor Absent in melanoma 2 (Aim2) might affect the phenotype of vascular smooth muscle cells (VSMC), thereby reducing AA formation. Methods : Aim2-/- mice and wild-type (WT) C57Bl/6J mice were used as an animal model. VSMC were isolated from 6 months old mice and grown in vitro . Young (passage 3-5) and senescent (passage 7-12) cells were analyzed in vitro for calcification in mineralization medium by Alizarin Red S staining. Expression of calcification and inflammatory markers were studied by real-time RT-PCR and Western blotting, release of cytokines was determined by ELISA. To induce AA, osmotic mini-pumps loaded with AngII (1500 ng/kg bodyweight/min) were implanted for 28 days in male mice at 6 months of age. Results : Compared with VSMC from WT mice, VSMC isolated from Aim2-/- mice were larger, less viable, and underwent stronger calcification in mineralization medium, along with induction of Bmp4 and repression of Tnfsf11/Rankl gene expression. In addition, Aim2 deficiency was associated with reduced inflammasome gene expression and release of Interleukin-6. Using the mouse model of AngII induced AA, Aim2 deficiency reduced AA incidence to 48.4% (15/31) in Aim2-/- mice versus 76.5% (13/17) in WT mice. In contrast to Aim2-/- mice, AA from WT mice expressed significantly increased levels of alpha-smooth muscle actin/ Acta2 , indicating tissue remodeling. Reduced cell proliferation in Aim2-/- mice was indicated by significantly increased p16ink4a/ Cdkn2a expression in untreated and AngII-infused aortas, and by significantly lower amounts of proliferating (Ki67 positive) VSMC in AngII-infused Aim2-/- mice. Conclusions: Our results suggest a role for Aim2 in regulating VSMC proliferation and transition to an osteoblast-like or osteoclast-like phenotype, thereby modulating the response of VSMC in aortic remodeling and AA Formation.


2020 ◽  
Author(s):  
Markus Wortmann ◽  
Muhammad Arshad ◽  
Maani Hakimi ◽  
Dittmar Böckler ◽  
Susanne Dihlmann

Abstract Background: Phenotypic transformation of vascular smooth muscle cells is a key element in vascular remodeling and aortic aneurysm growth. Previously, deletion of several inflammasome components decreased formation of aortic aneurysm (AA) in the Angiotensin II (AngII) -induced mouse model. We hypothesized that the inflammasome sensor Absent in melanoma 2 (Aim2) might affect the phenotype of vascular smooth muscle cells (VSMC), thereby reducing AA formation. Methods: Aim2-/- mice and wild-type (WT) C57Bl/6J mice were used as an animal model. VSMC were isolated from 6 months old mice and grown in vitro. Young (passage 3-5) and senescent (passage 7-12) cells were analyzed in vitro for calcification in mineralization medium by Alizarin Red S staining. Expression of calcification and inflammatory markers were studied by real-time RT-PCR and Western blotting, release of cytokines was determined by ELISA. To induce AA, osmotic mini-pumps loaded with AngII (1500 ng/kg bodyweight/min) were implanted for 28 days in male mice at 6 months of age.Results: Compared with VSMC from WT mice, VSMC isolated from Aim2-/- mice were larger, less viable, and underwent stronger calcification in mineralization medium, along with induction of Bmp4 and repression of Tnfsf11/Rankl gene expression. In addition, Aim2 deficiency was associated with reduced inflammasome gene expression and release of Interleukin-6. Using the mouse model of AngII induced AA, Aim2 deficiency reduced AA incidence to 48.4% (15/31) in Aim2-/- mice versus 76.5% (13/17) in WT mice. In contrast to Aim2-/- mice, AA from WT mice expressed significantly increased levels of alpha-smooth muscle actin/Acta2, indicating tissue remodeling. Reduced cell proliferation in Aim2-/- mice was indicated by significantly increased p16ink4a/Cdkn2a expression in untreated and AngII-infused aortas, and by significantly lower amounts of proliferating (Ki67 positive) VSMC in AngII-infused Aim2-/- mice. Conclusions: Our results suggest a role for Aim2 in regulating VSMC proliferation and transition to an osteoblast-like or osteoclast-like phenotype, thereby modulating the response of VSMC in aortic remodeling and AA formation.


2020 ◽  
Author(s):  
Markus Wortmann ◽  
Muhammad Arshad ◽  
Maani Hakimi ◽  
Dittmar Böckler ◽  
Susanne Dihlmann

Abstract Backgound Phenotypic transformation of vascular smooth muscle cells is a key element in vascular remodeling and aortic aneurysm growth. Previously, deletion of several inflammasome components decreased formation of abdominal aortic aneurysm (AAA) in the Angiotensin II (AngII) -induced mouse model. We hypothesized that the inflammasome sensor Absent in melanoma 2 (Aim2) might affect the phenotype of vascular smooth muscle cells (VSMC), thereby reducing AAA formation. Methods Aim2-/- mice and wild-type (WT) C57Bl/6J mice were used as an animal model. VSMC were isolated at the age of 6 months and grown for different numbers of passages. Young (passage 3-5) and senescent (passage 7-12) cells were analyzed in vitro for calcification in mineralization medium by Alizarin Red S staining. Expression of calcification and inflammatory markers were studied by real-time RT-PCR and Western blotting, release of cytokines was determined by ELISA. To induce AAA, osmotic mini-pumps loaded with AngII (1500 ng/kg bodyweight/min) were implanted for 28 days in male mice at 6 months of age. Results Compared with VSMC from WT mice, VSMC isolated from Aim2-/- mice were larger, less viable, and underwent stronger calcification in mineralization medium, along with induction of BMP4 and repression of Tnfsf11/Rankl gene expression. In addition, Aim2 deficiency was associated with reduced inflammasome gene expression and release of Interleukin-6. Using the mouse model of AngII induced AAA, Aim2 deficiency reduced AAA incidence to 48.4% (15/31) in Aim2-/- mice versus 76.5% (13/17) in WT mice. In contrast to Aim2-/- mice, AAA from WT mice expressed significantly increased levels of alpha-smooth muscle actin/ Acta2 , indicating tissue remodeling. Reduced cell proliferation in Aim2-/- mice was indicated by significantly increased p16ink4a/ Cdkn2a expression in untreated and AngII-infused aortas, and by significantly lower amounts of proliferating (Ki67 positive) VSMC in AngII-infused Aim2-/- mice. Conclusions Our results suggest a role for Aim2 in regulating VSMC proliferation and transition to an osteoblast-like or osteoclast-like phenotype, thereby modulating the response of VSMC in aortic remodeling and AAA formation.


2005 ◽  
Vol 108 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Giovanna CASTOLDI ◽  
Serena REDAELLI ◽  
Willy M. M. van de GREEF ◽  
Cira R. T. di GIOIA ◽  
Giuseppe BUSCA ◽  
...  

Ang II (angiotensin II) has multiple effects on vascular smooth muscle cells through the modulation of different classes of genes. Using the mRNA differential-display method to investigate gene expression in rat aortic smooth muscle cells in culture in response to 3 h of Ang II stimulation, we observed that Ang II down-regulated the expression of a member of the family of transmembrane receptors for Wnt proteins that was identified as Fzd2 [Fzd (frizzled)-2 receptor]. Fzds are a class of highly conserved genes playing a fundamental role in the developmental processes. In vitro, time course experiments demonstrated that Ang II induced a significant increase (P<0.05) in Fzd2 expression after 30 min, whereas it caused a significant decrease (P<0.05) in Fzd2 expression at 3 h. A similar rapid up-regulation after Ang II stimulation for 30 min was evident for TGFβ1 (transforming growth factor β1; P<0.05). To investigate whether Ang II also modulated Fzd2 expression in vivo, exogenous Ang II was administered to Sprague–Dawley rats (200 ng·kg−1 of body weight·min−1; subcutaneously) for 1 and 4 weeks. Control rats received normal saline. After treatment, systolic blood pressure was significantly higher (P<0.01), whereas plasma renin activity was suppressed (P<0.01) in Ang II- compared with the saline-treated rats. Ang II administration for 1 week did not modify Fzd2 expression in aorta of Ang II-treated rats, whereas Ang II administration for 4 weeks increased Fzd2 mRNA expression (P<0.05) in the tunica media of the aorta, resulting in a positive immunostaining for fibronectin at this time point. In conclusion, our data demonstrate that Ang II modulates Fzd2 expression in aortic smooth muscle cells both in vitro and in vivo.


2001 ◽  
Vol 19 (11) ◽  
pp. 2011-2018 ◽  
Author(s):  
Giovanna Castoldi ◽  
Cira R. T. di Gioia ◽  
Federico Pieruzzi ◽  
Willy M. M. van de Greef ◽  
Giuseppe Busca ◽  
...  

2000 ◽  
Vol 6 (11) ◽  
pp. 983-991 ◽  
Author(s):  
Levent M. Akyürek ◽  
Zhi-Yong Yang ◽  
Kazunori Aoki ◽  
Hong San ◽  
Gary J. Nabel ◽  
...  

2020 ◽  
Author(s):  
András Balla ◽  
Laura Szalai ◽  
Janka Gém ◽  
Kinga Kovács ◽  
Gyöngyi Szakadáti ◽  
...  

Circulation ◽  
2001 ◽  
Vol 104 (15) ◽  
pp. 1746-1748 ◽  
Author(s):  
Hidemi Nonaka ◽  
Noriaki Emoto ◽  
Koji Ikeda ◽  
Hiroyuki Fukuya ◽  
Mohammad Saifur Rohman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document