scholarly journals Adaptive Backstepping Terminal Sliding Mode Control Method Based on Recurrent Neural Networks for Autonomous Underwater Vehicle

Author(s):  
Chao Yang ◽  
Feng Yao ◽  
Ming-Jun Zhang
Author(s):  
Nira Mawangi Sarif ◽  
Rafidah Ngadengon ◽  
Herdawatie Abdul Kadir ◽  
Mohd Hafiz A. Jalil

<p>In this study, mechanism for reducing chattering in discrete conventional Sliding Mode Controller (DSMC) for Autonomous Underwater Vehicle (AUV) was designed in discrete time domain. The combination of reaching law approach and discrete Terminal Sliding Mode Control (DTSMC) scheme was employed to alleviate chattering effect caused by Quasi Sliding Mode (QSM). First, 6 DOF NPS AUV II equation of motion is linearized to diving mode subsystem. Second, linear sliding surface in discrete time domain is designed and Reaching Law Based (RLB) is employed to the control law. Thirdly, discrete nonlinear sliding surface, specifically DTSMC is designed to reduce chattering phenomena and improved precision control simultaneously. Finally, comparative experimental results are presented to illustrate the effectiveness and advantages of the nonlinear sliding surface. (9 pt).</p>


2020 ◽  
Vol 17 (2) ◽  
pp. 172988142091994
Author(s):  
Jian Cao ◽  
Yushan Sun ◽  
Guocheng Zhang ◽  
Wenlong Jiao ◽  
Xiangbin Wang ◽  
...  

This article addresses the design of adaptive target tracking control for an underactuated autonomous underwater vehicle subject to uncertain dynamics and external disturbances induced by ocean current. Firstly, based on the line-of-sight method, the moving target tracking guidance strategy is designed, and the target tracking reference speed and reference angular velocity are given. According to the obtained reference speed and reference angular velocities, the reference control quantity is differentiated and filtered based on dynamic surface control. The target tracking controller is designed based on radial basis function neural network and nonsingular terminal sliding mode control and adaptive techniques. Lyapunov stability principle is utilized to ensure the asymptotic stability of the target tracking controller. Simulation of target tracking is carried out to illustrate the effectiveness of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document