scholarly journals Anatomy and cell wall ultrastructure of sunflower stalk rind

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Lizhen Wang ◽  
Hao Ren ◽  
Shengcheng Zhai ◽  
Huamin Zhai

AbstractThe anatomy and ultrastructure of sunflower stalk rind are closely related to its conversion and utilization. We studied systematically the anatomy and ultrastructure of the stalk rind using light, scanning electron, transmission electron and fluorescence microscopy. The results showed that the stalk rind consisted of phloem fibers (PF), xylem fibers (XF), vessel elements (V), ground parenchyma cells (GPC), axial parenchyma cells (APC), xylem ray parenchyma cells (XRPC), and pith ray parenchyma cells (PRPC). These cell walls were divided into the middle lamella, primary wall, and secondary wall (S). It was found that the S of PF, XF and V was further divided into three layers (S1–S3), while the S of APC, GPC, XRPC and PRPC showed a non-layered cell wall organization or differentiated two (S1, S2) to seven layers (S1–S7). Our research revealed the plasmodesmata characteristics in the pit membranes (PMs) between parenchyma cells (inter-GPCs, inter-XRPCs, and inter-PRPCs). The morphology of the plasmodesmata varied with the types of parenchyma cells. The thickness and diameter of PMs between the cells (inter-Vs, V–XF, V–APC, and V–XRPC) were greater than that of PMs between parenchyma cells. The cell corners among parenchyma cells were intercellular space. The lignification degree of vessels was higher than that of parenchyma cells and fibers. The results will provide useful insights into the biological structure, conversion and utilization of sunflower stalk rind.

IAWA Journal ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 383-401 ◽  
Author(s):  
Jong Sik Kim ◽  
Geoffrey Daniel

Although there is considerable information on anatomy and gross chemistry of oak wood, little is known on the ultrastructure and chemistry at the individual cell wall level. In particular, differences in ultrastructure and chemistry within the same cell type between earlywood (EW) and latewood (LW) are poorly understood. This study investigated the ultrastructure and chemistry of (vasicentric) tracheids, vessels, (libriform) fibers and axial/ray parenchyma cells of English oak xylem (Quercus robur L.) using light-, fluorescence- and transmission electron microscopy combined with histo/cytochemistry and immunohisto/ cytochemistry. EW tracheids showed several differences from LW tracheids including thinner cell walls, wider middle lamella cell corner (MLcc) regions and lesser amounts of mannan epitopes. Fibers showed thicker cell walls and higher amounts of mannan epitopes than tracheids. EW vessels were rich in guaiacyl (G) lignin with a characteristic non-layered cell wall organization (absence of S1–3 layers), whereas LW vessels were rich in syringyl (S) lignin with a three layered cell wall structure (S1–3 layers). Formation of a highly lignified and wide protective layer (PL) inside axial/ray parenchyma cells was detected only in EW. Distribution of mannan epitopes varied greatly between cell types and between EW and LW, whereas distribution of xylan epitopes was almost identical in all cell types within a growth ring. Together, this study demonstrates that there are great variations in ultrastructure and chemistry of cell walls within a single growth ring of English oak xylem.


2013 ◽  
Vol 19 (1) ◽  
pp. 243-253 ◽  
Author(s):  
Jianfeng Ma ◽  
Zhe Ji ◽  
Xia Zhou ◽  
Zhiheng Zhang ◽  
Feng Xu

AbstractTransmission electron microscopy (TEM), fluorescence microscopy, and confocal Raman microscopy can be used to characterize ultrastructural and compositional heterogeneity of plant cell walls. In this study, TEM observations revealed the ultrastructural characterization of Cornus alba L. fiber, vessel, axial parenchyma, ray parenchyma, and pit membrane between cells, notably with the ray parenchyma consisting of two well-defined layers. Fluorescence microscopy evidenced that cell corner middle lamella was more lignified than adjacent compound middle lamella and secondary wall with variation in lignification level from cell to cell. In situ Raman images showed that the inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber cell wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose were visualized in the pit membrane areas. These complementary microanalytical methods provide more accurate and complete information with regard to ultrastructural and compositional characterization of plant cell walls.


IAWA Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Mi Young Cha ◽  
Kwang Ho Lee ◽  
Jong Sik Kim ◽  
Yoon Soo Kim

Abstract The bacterial decay of waterlogged archeological wood (WAW, hard pine spp.) taken from Daebudo shipwreck No. 2, which was buried in the intertidal zone in the mid-west coast (Yellow sea) of South Korea approximately 800 years ago, was investigated. The maximum moisture content of the outer parts (approx. 3 cm of depth) of WAW was approximately 4.2 times higher than that of undegraded reference pine wood. ATR-FTIR and solid-state 13C-NMR analysis indicated a relative increase of the lignin concentration in WAW caused by the degradation of cellulose and hemicelluloses across the board studied (31-cm-wide and 14.5-cm-thick board). Micromorphological studies also revealed that bacterial degradation was progressed to a depth of 15 cm (vertically 7.3 cm) from the surface, which is the innermost part of the board. Erosion bacteria (EB) were identified as the main degraders of WAW. Degradation by tunneling bacteria (TB) was occasionally detected. Decay resistance to bacterial attacks in WAW varied between cell types and between cell wall regions. Axial tracheids showed less resistance than ray tracheids, ray parenchyma cells, and axial intercellular canal cells, including strand tracheids, subsidiary parenchyma cells, and epithelial cells. Decay resistance was higher in ray tracheids and strand tracheids than in ray parenchyma cells and subsidiary parenchyma-/epithelial cells, respectively. Bordered- and cross-field pit membranes and the initial pit borders showed higher decay resistance than the tracheid cell walls. Overall, the S2 layer of the axial tracheids showed the weakest resistance to bacterial attacks.


IAWA Journal ◽  
2021 ◽  
pp. 1-9
Author(s):  
Katrin Zimmer ◽  
Andreas Treu

Abstract Scots pine exhibits variations in ray anatomy, which are poorly understood. Some ray parenchyma cells develop thick and lignified cell walls before heartwood formation. We hypothesized that some stands and trees show high numbers of lignified and thick-walled parenchyma cells early in the sapwood. Therefore, a microscopic analysis of Scots pine sapwood from four different stands in Northern Europe was performed on Safranin — Astra blue-stained tangential micro sections from outer and inner sapwood areas. Significant differences in lignification and cell wall thickening of ray parenchyma cells were observed in the outer sapwood between all of the stands for the trees analyzed. On a single tree level, the relative lignification and cell wall thickening of ray parenchyma cells ranged from 4.3% to 74.3% in the outer sapwood. In the inner sapwood, lignification and cell wall thickening of ray parenchyma cells were more frequent. In some trees, however, the difference in lignification and cell wall thickening between inner and outer sapwood was small since early lignification, and cell wall thickening was already more common in the outer sapwood. Ray composition and number of rays per area were not significantly different within the studied material. However, only one Scottish tree had a significantly higher number of ray parenchyma cells per ray. The differences discovered in lignification and cell wall thickening in ray parenchyma cells early in the sapwood of Scots pine are relevant for wood utilization in general and impregnation treatments with protection agents in particular.


Holzforschung ◽  
2014 ◽  
Vol 68 (7) ◽  
pp. 791-798 ◽  
Author(s):  
Nanna Bjerregaard Pedersen ◽  
Uwe Schmitt ◽  
Gerald Koch ◽  
Claus Felby ◽  
Lisbeth Garbrecht Thygesen

Abstract The lignin distribution in poles of waterlogged archaeological Picea abies (L.) Karst, which was decayed by erosion bacteria (EB) under anoxic conditions for approximately 400 years, was topochemically identified by transmission electron microscopy (TEM) and high resolution UV-microspectrophotometry (UMSP). Lignin rich cell wall compartments such as cell corner (CC), compound middle lamella (CML), torus, initial pit border and mild compression wood (CW) appeared morphologically well preserved together with S1 and S3 layers and epithelial and ray parenchyma cells. Residual material (RM) from degraded S2 showed a varied lignin distribution as evidenced by the different local UV-absorbance intensities. However, evaluation of UV-absorbance line spectra of RM revealed no change in conjugation of the aromatic ring system. Presence of RM with both very low and very high lignin absorbances showed evidence for disassembly of lignin during degradation combined with aggregation of lignin fragments and physical movement of these fractions. In contrast to TEM analysis, locally decreasing lignin content was found by UMSP in CML regions.


IAWA Journal ◽  
2009 ◽  
Vol 30 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Pat Denne ◽  
Siân Turner

Differences between the ray structure of rootwood and stemwood were analysed in 11 species from 5 families of gymnosperms. Rootwood was consistently found to have fewer ray tracheids, with ray parenchyma cells which were taller axially, wider tangentially, but shorter radially, and had more pits per cross-field than stemwood. A scale for quantifying types of cross-field pitting is proposed, and statistically significant differences in type and diameter of cross-field pitting were found between rootwood and stemwood of most species sampled. These structural differences have practical implications for identification of gymnosperm roots, and for distinguishing between rootwood and stemwood.


IAWA Journal ◽  
2008 ◽  
Vol 29 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Pat Denne ◽  
Peter Gasson

Differences in ray structure between root- and stem-wood of softwoods can cause confusion in identifying roots using keys based on stem-wood anatomy. Comparison of root- and stem-wood rays of Larix decidua showed root-wood had fewer ray tracheids, taller, wider but shorter ray parenchyma cells, and larger cross-field pits than stem-wood. The implications of these differences are considered in relation to the identification and function of roots.


1988 ◽  
Vol 66 (9) ◽  
pp. 1841-1847 ◽  
Author(s):  
Robert A. Blanchette ◽  
John R. Obst ◽  
John I. Hedges ◽  
Karen Weliky

White stringy rot, an unusual type of selective fungal decay, can be found in wood of some dicotyledonous angiosperms. Stages of advanced decay consist of a mass of vessel elements with only remnants of other cells adhering to the vessel walls. Degradation by various white rot Basidiomycetes causes loss of fibers, fiber tracheids, and parenchyma cells but not vessels. In wood of Acacia koa var. koa with a white pocket rot caused by Phellinus kawakamii, fibers and parenchyma cells were preferentially delignified. After extensive lignin removal the cellulose remaining in the secondary wall was degraded. Large vessel elements remained relatively intact after other cells were completely degraded. The resistance of vessels to degradation appears to be due to their high ligninxarbohydrate ratio, lignin monomer composition, and cell wall morphology.


Sign in / Sign up

Export Citation Format

Share Document