scholarly journals fLPS: Fast discovery of compositional biases for the protein universe

2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Paul M. Harrison
Keyword(s):  
2006 ◽  
Vol 7 (7) ◽  
pp. 492-492
Author(s):  
Magdalena Skipper

2007 ◽  
Vol 17 (3) ◽  
pp. 347-353 ◽  
Author(s):  
Marek Grabowski ◽  
Andrzej Joachimiak ◽  
Zbyszek Otwinowski ◽  
Wladek Minor

Author(s):  
Nelson Perdigão

The dark proteome as we define it, is the part of the proteome where 3D structure has not been observed either by homology modeling or by experimental characterization in the protein universe. From the 550.116 proteins available in Swiss-Prot (as of July 2016) 43.2% of the Eukarya universe and 49.2% of the Virus universe are part of the dark proteome. In Bacteria and Archaea, the percentage of the dark proteome presence is significantly less, with 12.6% and 13.3% respectively. In this work, we present the map of the dark proteome in Human and in other model organisms. The most significant result is that around 40%- 50% of the proteome of these organisms are still in the dark, where the higher percentages belong to higher eukaryotes (mouse and human organisms). Due to the amount of darkness present in the human organism being more than 50%, deeper studies were made, including the identification of ‘dark’ genes that are responsible for the production of the so-called dark proteins, as well as, the identification of the ‘dark’ organs where dark proteins are over represented, namely heart, cervical mucosa and natural killer cells. This is a step forward in the direction of the human dark proteome.


2021 ◽  
Author(s):  
Liam M. Longo ◽  
Rachel Kolodny ◽  
Shawn E. McGlynn

AbstractAs sequence and structure comparison algorithms gain sensitivity, the intrinsic interconnectedness of the protein universe has become increasingly apparent. Despite this general trend, β-trefoils have emerged as an uncommon counterexample: They are an isolated protein lineage for which few, if any, sequence or structure associations to other lineages have been identified. If β-trefoils are, in fact, remote islands in sequence-structure space, it implies that the oligomerizing peptide that founded the β-trefoil lineage itself arose de novo. To better understand β-trefoil evolution, and to probe the limits of fragment sharing across the protein universe, we identified both ‘β-trefoil bridging themes’ (evolutionarily-related sequence segments) and ‘β-trefoil-like motifs’ (structure motifs with a hallmark feature of the β-trefoil architecture) in multiple, ostensibly unrelated, protein lineages. The success of the present approach stems, in part, from considering β-trefoil sequence segments or structure motifs rather than the β-trefoil architecture as a whole, as has been done previously. The newly uncovered inter-lineage connections presented here suggest a novel hypothesis about the origins of the β-trefoil fold itself – namely, that it is a derived fold formed by ‘budding’ from an Immunoglobulin-like β-sandwich protein. These results demonstrate how the emergence of a folded domain from a peptide need not be a signature of antiquity and underpin an emerging truth: few protein lineages escape nature’s sewing table.


2019 ◽  
Vol 8 (2) ◽  
pp. 8 ◽  
Author(s):  
Nelson Perdigão ◽  
Agostinho Rosa

The dark proteome, as we define it, is the part of the proteome where 3D structure has not been observed either by homology modeling or by experimental characterization in the protein universe. From the 550.116 proteins available in Swiss-Prot (as of July 2016), 43.2% of the eukarya universe and 49.2% of the virus universe are part of the dark proteome. In bacteria and archaea, the percentage of the dark proteome presence is significantly less, at 12.6% and 13.3% respectively. In this work, we present a necessary step to complete the dark proteome picture by introducing the map of the dark proteome in the human and in other model organisms of special importance to mankind. The most significant result is that around 40% to 50% of the proteome of these organisms are still in the dark, where the higher percentages belong to higher eukaryotes (mouse and human organisms). Due to the amount of darkness present in the human organism being more than 50%, deeper studies were made, including the identification of ‘dark’ genes that are responsible for the production of so-called dark proteins, as well as the identification of the ‘dark’ tissues where dark proteins are over represented, namely, the heart, cervical mucosa, and natural killer cells. This is a step forward in the direction of gaining a deeper knowledge of the human dark proteome.


Nature ◽  
2015 ◽  
Vol 528 (7583) ◽  
pp. 580-584 ◽  
Author(s):  
TJ Brunette ◽  
Fabio Parmeggiani ◽  
Po-Ssu Huang ◽  
Gira Bhabha ◽  
Damian C. Ekiert ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Reed B. Jacob ◽  
Kenan C. Michaels ◽  
Cathy J. Anderson ◽  
James M. Fay ◽  
Nikolay V. Dokholyan

Abstract Organophosphate poisoning can occur from exposure to agricultural pesticides or chemical weapons. This exposure inhibits acetylcholinesterase resulting in increased acetylcholine levels within the synaptic cleft causing loss of muscle control, seizures, and death. Mitigating the effects of organophosphates in our bodies is critical and yet an unsolved challenge. Here, we present a computational strategy that integrates structure mining and modeling approaches, using which we identify novel candidates capable of interacting with a serine hydrolase probe (with equilibrium binding constants ranging from 4 to 120 μM). One candidate Smu. 1393c catalyzes the hydrolysis of the organophosphate omethoate (kcat/Km of (2.0 ± 1.3) × 10−1 M−1s−1) and paraoxon (kcat/Km of (4.6 ± 0.8) × 103 M−1s−1), V- and G-agent analogs respectively. In addition, Smu. 1393c protects acetylcholinesterase activity from being inhibited by two organophosphate simulants. We demonstrate that the utilized approach is an efficient and highly-extendable framework for the development of prophylactic therapeutics against organophosphate poisoning and other important targets. Our findings further suggest currently unknown molecular evolutionary rules governing natural diversity of the protein universe, which make it capable of recognizing previously unseen ligands.


Sign in / Sign up

Export Citation Format

Share Document