scholarly journals Correction to: Two-stage Bayesian hierarchical modeling for blinded and unblinded safety monitoring in randomized clinical trials

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Junhao Liu ◽  
Jo Wick ◽  
Renee’ H. Martin ◽  
Caitlyn Meinzer ◽  
Dooti Roy ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Junhao Liu ◽  
Jo Wick ◽  
Renee’ H. Martin ◽  
Caitlyn Meinzer ◽  
Dooti Roy ◽  
...  

Abstract Background Monitoring and reporting of drug safety during a clinical trial is essential to its success. More recent attention to drug safety has encouraged statistical methods development for monitoring and detecting potential safety signals. This paper investigates the potential impact of the process of the blinded investigator identifying a potential safety signal, which should be further investigated by the Data and Safety Monitoring Board with an unblinded safety data analysis. Methods In this paper, two-stage Bayesian hierarchical models are proposed for safety signal detection following a pre-specified set of interim analyses that are applied to efficacy. At stage 1, a hierarchical blinded model uses blinded safety data to detect a potential safety signal and at stage 2, a hierarchical logistic model is applied to confirm the signal with unblinded safety data. Results Any interim safety monitoring analysis is usually scheduled via negotiation between the trial sponsor and the Data and Safety Monitoring Board. The proposed safety monitoring process starts once 53 subjects have been enrolled into an eight-arm phase II clinical trial for the first interim analysis. Operating characteristics describing the performance of this proposed workflow are investigated using simulations based on the different scenarios. Conclusions The two-stage Bayesian safety procedure in this paper provides a statistical view to monitor safety during the clinical trials. The proposed two-stage monitoring model has an excellent accuracy of detecting and flagging a potential safety signal at stage 1, and with the most important feature that further action at stage 2 could confirm the safety issue.


2017 ◽  
Vol 36 (11) ◽  
pp. 1735-1753 ◽  
Author(s):  
Susan R. Bryan ◽  
Paul H.C. Eilers ◽  
Joost van Rosmalen ◽  
Dimitris Rizopoulos ◽  
Koenraad A. Vermeer ◽  
...  

2018 ◽  
Vol 16 (2) ◽  
pp. 142-153 ◽  
Author(s):  
Kristen M Cunanan ◽  
Alexia Iasonos ◽  
Ronglai Shen ◽  
Mithat Gönen

Background: In the era of targeted therapies, clinical trials in oncology are rapidly evolving, wherein patients from multiple diseases are now enrolled and treated according to their genomic mutation(s). In such trials, known as basket trials, the different disease cohorts form the different baskets for inference. Several approaches have been proposed in the literature to efficiently use information from all baskets while simultaneously screening to find individual baskets where the drug works. Most proposed methods are developed in a Bayesian paradigm that requires specifying a prior distribution for a variance parameter, which controls the degree to which information is shared across baskets. Methods: A common approach used to capture the correlated binary endpoints across baskets is Bayesian hierarchical modeling. We evaluate a Bayesian adaptive design in the context of a non-randomized basket trial and investigate three popular prior specifications: an inverse-gamma prior on the basket-level variance, a uniform prior and half-t prior on the basket-level standard deviation. Results: From our simulation study, we can see that the inverse-gamma prior is highly sensitive to the input hyperparameters. When the prior mean value of the variance parameter is set to be near zero [Formula: see text], this can lead to unacceptably high false-positive rates [Formula: see text] in some scenarios. Thus, use of this prior requires a fully comprehensive sensitivity analysis before implementation. Alternatively, we see that a prior that places sufficient mass in the tail, such as the uniform or half-t prior, displays desirable and robust operating characteristics over a wide range of prior specifications, with the caveat that the upper bound of the uniform prior and the scale parameter of the half-t prior must be larger than 1. Conclusion: Based on the simulation results, we recommend that those involved in designing basket trials that implement hierarchical modeling avoid using a prior distribution that places a majority of the density mass near zero for the variance parameter. Priors with this property force the model to share information regardless of the true efficacy configuration of the baskets. Many commonly used inverse-gamma prior specifications have this undesirable property. We recommend to instead consider the more robust uniform prior or half-t prior on the standard deviation.


Author(s):  
Suguru Yamanaka ◽  
Rei Yamamoto

Recent interest in financial technology (fintech) lending business has caused increasing challenges of credit scoring models using bank account activity information. Our work aims to develop a new credit scoring method based on bank account activity information. This method incorporates borrower firms’ segment-level heterogeneity, such as a segment of sales size and firm age. We employ Bayesian hierarchical modeling, which mitigates data sparsity issue due to data segmentation. We describe our modeling procedures, including data handling and variable selection. Empirical results show that our model outperforms the traditional logistic model for credit scoring in information criterion. Our model realizes advanced credit scoring based on bank account activity information in fintech lending businesses, taking segment-specific features into credit risk assessment.


Sign in / Sign up

Export Citation Format

Share Document