scholarly journals Long live the king: chromosome-level assembly of the lion (Panthera leo) using linked-read, Hi-C, and long-read data

BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Ellie E. Armstrong ◽  
Ryan W. Taylor ◽  
Danny E. Miller ◽  
Christopher B. Kaelin ◽  
Gregory S. Barsh ◽  
...  

Abstract Background The lion (Panthera leo) is one of the most popular and iconic feline species on the planet, yet in spite of its popularity, the last century has seen massive declines for lion populations worldwide. Genomic resources for endangered species represent an important way forward for the field of conservation, enabling high-resolution studies of demography, disease, and population dynamics. Here, we present a chromosome-level assembly from a captive African lion from the Exotic Feline Rescue Center (Center Point, IN) as a resource for current and subsequent genetic work of the sole social species of the Panthera clade. Results Our assembly is composed of 10x Genomics Chromium data, Dovetail Hi-C, and Oxford Nanopore long-read data. Synteny is highly conserved between the lion, other Panthera genomes, and the domestic cat. We find variability in the length of runs of homozygosity across lion genomes, indicating contrasting histories of recent and possibly intense inbreeding and bottleneck events. Demographic analyses reveal similar ancient histories across all individuals during the Pleistocene except the Asiatic lion, which shows a more rapid decline in population size. We show a substantial influence on the reference genome choice in the inference of demographic history and heterozygosity. Conclusions We demonstrate that the choice of reference genome is important when comparing heterozygosity estimates across species and those inferred from different references should not be compared to each other. In addition, estimates of heterozygosity or the amount or length of runs of homozygosity should not be taken as reflective of a species, as these can differ substantially among individuals. This high-quality genome will greatly aid in the continuing research and conservation efforts for the lion, which is rapidly moving towards becoming a species in danger of extinction.

2019 ◽  
Author(s):  
Ellie E. Armstrong ◽  
Ryan W. Taylor ◽  
Danny E. Miller ◽  
Christopher Kaelin ◽  
Gregory Barsh ◽  
...  

AbstractThe lion (Panthera leo) is one of the most popular and iconic feline species on the planet, yet in spite of its popularity, the last century has seen massive declines for lion populations worldwide. Genomic resources for endangered species represent an important way forward for the field of conservation, enabling high-resolution studies of demography, disease, and population dynamics. Here, we present a chromosome-level assembly for the captive African lion from the Exotic Feline Rescue Center as a resource for current and subsequent genetic work of the sole social species of the Panthera clade. Our assembly is composed of 10x Genomics Chromium data, Dovetail Hi-C, and Oxford Nanopore long-read data. Synteny is highly conserved between the lion, other Panthera genomes, and the domestic cat. We find variability in the length and levels of homozygosity across the genomes of the lion sequenced here and other previous published resequence data, indicating contrasting histories of recent and ancient small population sizes and/or inbreeding. Demographic analyses reveal similar histories across all individuals except the Asiatic lion, which shows a more rapid decline in population size. This high-quality genome will greatly aid in the continuing research and conservation efforts for the lion.


2021 ◽  
Author(s):  
Milyausha Kaskinova ◽  
Bayazit Yunusbayev ◽  
Radick Altinbaev ◽  
Rika Raffiudin ◽  
Madeline H. Carpenter ◽  
...  

ABSTRACTApis mellifera L., the western honey bee is a major crop pollinator that plays a key role in beekeeping and serves as an important model organism in social behavior studies. Recent efforts have improved on the quality of the honey bee reference genome and developed a chromosome-level assembly of sixteen chromosomes, two of which are gapless. However, the rest suffer from 51 gaps, 160 unplaced/unlocalized scaffolds, and the lack of 2 distal telomeres. The gaps are located at the hard-to-assemble extended highly repetitive chromosomal regions that may contain functional genomic elements. Here, we use de-novo re-assemblies from the most recent reference genome Amel_HAv_3.1 raw reads and other long-read-based assemblies (INRA_AMelMel_1.0, ASM1384120v1, and ASM1384124v1) of the honey bee genome to resolve 13 gaps, five unplaced/unlocalized scaffolds and, the lacking telomeres of the Amel_HAv_3.1. The total length of the resolved gaps is 848,747 bp. The accuracy of the corrected assembly was validated by mapping PacBio reads and performing gene annotation assessment. Comparative analysis suggests that the PacBio-reads-based assemblies of the honey bee genomes failed in the same highly repetitive extended regions of the chromosomes, especially on chromosome 10. To fully resolve these extended repetitive regions, further work using ultra-long Nanopore sequencing would be needed. Our updated assembly facilitates more accurate reference-guided scaffolding and marker/sequence mapping in honey bee genomics studies.


GigaScience ◽  
2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Sihan Lu ◽  
Jie Yang ◽  
Xuelei Dai ◽  
Feiang Xie ◽  
Jinwu He ◽  
...  

AbstractBackgroundPapilio bianor Cramer, 1777 (commonly known as the Chinese peacock butterfly) (Insecta, Lepidoptera, Papilionidae) is a widely distributed swallowtail butterfly with a wide number of geographic populations ranging from the southeast of Russia to China, Japan, India, Vietnam, Myanmar, and Thailand. Its wing color consists of both pigmentary colored scales (black, reddish) and structural colored scales (iridescent blue or green dust). A high-quality reference genome of P. bianor is an important foundation for investigating iridescent color evolution, phylogeography, and the evolution of swallowtail butterflies.FindingsWe obtained a chromosome-level de novo genome assembly of the highly heterozygous P. bianor using long Pacific Biosciences sequencing reads and high-throughput chromosome conformation capture technology. The final assembly is 421.52 Mb on 30 chromosomes (29 autosomes and 1 Z sex chromosome) with 13.12 Mb scaffold N50. In total, 15,375 protein-coding genes and 233.09 Mb of repetitive sequences were identified. Phylogenetic analyses indicated that P. bianor separated from a common ancestor of swallowtails ∼23.69–36.04 million years ago. Demographic history suggested that the population expansion of this species from the last interglacial period to the last glacial maximum possibly resulted from its decreased natural enemies and its adaptation to climate change during the glacial period.ConclusionsWe present a high-quality chromosome-level reference genome of P. bianor using long-read single-molecule sequencing and Hi-C–based chromatin interaction maps. Our results lay the foundation for exploring the genetic basis of special biological features of P. bianor and also provide a useful data source for comparative genomics and phylogenomics among butterflies and moths.


GigaScience ◽  
2020 ◽  
Vol 9 (6) ◽  
Author(s):  
Amanda Warr ◽  
Nabeel Affara ◽  
Bronwen Aken ◽  
Hamid Beiki ◽  
Derek M Bickhart ◽  
...  

Abstract Background The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model given its similarity in size, anatomy, physiology, metabolism, pathology, and pharmacology to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete, and unresolved redundancies, short-range order and orientation errors, and associated misassembled genes limited its utility. Results We present 2 annotated highly contiguous chromosome-level genome assemblies created with more recent long-read technologies and a whole-genome shotgun strategy, 1 for the same Duroc female (Sscrofa11.1) and 1 for an outbred, composite-breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. Conclusions These highly contiguous assemblies plus annotation of a further 11 short-read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs.


Author(s):  
Yun‐Tao Ji ◽  
Zhihui Xiu ◽  
Chun‐Hai Chen ◽  
Youru Wang ◽  
Jing‐Xia Yang ◽  
...  

2020 ◽  
Author(s):  
Phillip A. Morin ◽  
Frederick I. Archer ◽  
Catherine D. Avila ◽  
Jennifer R. Balacco ◽  
Yury V. Bukhman ◽  
...  

AbstractThe vaquita is the most critically endangered marine mammal, with fewer than 19 remaining in the wild. First described in 1958, the vaquita has been in rapid decline resulting from inadvertent deaths due to the increasing use of large-mesh gillnets for more than 20 years. To understand the evolutionary and demographic history of the vaquita, we used combined long-read sequencing and long-range scaffolding methods with long- and short-read RNA sequencing to generate a near error-free annotated reference genome assembly from cell lines derived from a female individual. The genome assembly consists of 99.92% of the assembled sequence contained in 21 nearly gapless chromosome-length autosome scaffolds and the X-chromosome scaffold, with a scaffold N50 of 115 Mb. Genome-wide heterozygosity is the lowest (0.01%) of any mammalian species analyzed to date, but heterozygosity is evenly distributed across the chromosomes, consistent with long-term small population size at genetic equilibrium, rather than low diversity resulting from a recent population bottleneck or inbreeding. Historical demography of the vaquita indicates long-term population stability at less than 5000 (Ne) for over 200,000 years. Together, these analyses indicate that the vaquita genome has had ample opportunity to purge highly deleterious alleles and potentially maintain diversity necessary for population health.


2019 ◽  
Author(s):  
Amanda Warr ◽  
Nabeel Affara ◽  
Bronwen Aken ◽  
H. Beiki ◽  
Derek M. Bickhart ◽  
...  

AbstractThe domestic pig (Sus scrofa) is important both as a food source and as a biomedical model with high anatomical and immunological similarity to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete and unresolved redundancies, short range order and orientation errors and associated misassembled genes limited its utility. We present two annotated highly contiguous chromosome-level genome assemblies created with more recent long read technologies and a whole genome shotgun strategy, one for the same Duroc female (Sscrofa11.1) and one for an outbred, composite breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. These highly contiguous assemblies plus annotation of a further 11 short read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs.


Author(s):  
Milyausha Kaskinova ◽  
Bayazit Yunusbayev ◽  
Radick Altinbaev ◽  
Rika Raffiudin ◽  
Madeline H Carpenter ◽  
...  

Abstract Apis mellifera L., the western honey bee is a major crop pollinator that plays a key role in beekeeping and serves as an important model organism in social behavior studies. Recent efforts have improved on the quality of the honey bee reference genome and developed a chromosome-level assembly of sixteen chromosomes, two of which are gapless. However, the rest suffer from 51 gaps, 160 unplaced/unlocalized scaffolds, and the lack of 2 distal telomeres. The gaps are located at the hard-to-assemble extended highly repetitive chromosomal regions that may contain functional genomic elements. Here, we use de-novo re-assemblies from the most recent reference genome Amel_HAv_3.1 raw reads and other long-read-based assemblies (INRA_AMelMel_1.0, ASM1384120v1, and ASM1384124v1) of the honey bee genome to resolve 13 gaps, five unplaced/unlocalized scaffolds and, the lacking telomeres of the Amel_HAv_3.1. The total length of the resolved gaps is 848,747 bp. The accuracy of the corrected assembly was validated by mapping PacBio reads and performing gene annotation assessment. Comparative analysis suggests that the PacBio-reads-based assemblies of the honey bee genomes failed in the same highly repetitive extended regions of the chromosomes, especially on chromosome 10. To fully resolve these extended repetitive regions, further work using ultra-long Nanopore sequencing would be needed. Our updated assembly facilitates more accurate reference-guided scaffolding and marker/sequence mapping in honey bee genomics studies.


Sign in / Sign up

Export Citation Format

Share Document