scholarly journals Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems

2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Attila Gábor ◽  
Alejandro F. Villaverde ◽  
Julio R. Banga
2014 ◽  
Vol 83 ◽  
pp. 104-115 ◽  
Author(s):  
Jimena Di Maggio ◽  
Cecilia Paulo ◽  
Vanina Estrada ◽  
Nora Perotti ◽  
Juan C. Diaz Ricci ◽  
...  

2003 ◽  
Vol 135 (3) ◽  
pp. 191-208 ◽  
Author(s):  
Binita Bhattacharjee ◽  
Douglas A. Schwer ◽  
Paul I. Barton ◽  
William H. Green

2018 ◽  
Author(s):  
Tuure Hameri ◽  
Georgios Fengos ◽  
Meric Ataman ◽  
Ljubisa Miskovic ◽  
Vassily Hatzimanikatis

AbstractLarge-scale kinetic models are used for designing, predicting, and understanding the metabolic responses of living cells. Kinetic models are particularly attractive for the biosynthesis of target molecules in cells as they are typically better than other types of models at capturing the complex cellular biochemistry. Using simpler stoichiometric models as scaffolds, kinetic models are built around a steady-state flux profile and a metabolite concentration vector that are typically determined via optimization. However, as the underlying optimization problem is underdetermined, even after incorporating available experimental omics data, one cannot uniquely determine the operational configuration in terms of metabolic fluxes and metabolite concentrations. As a result, some reactions can operate in either the forward or reverse direction while still agreeing with the observed physiology. Here, we analyze how the underlying uncertainty in intracellular fluxes and concentrations affects predictions of constructed kinetic models and their design in metabolic engineering and systems biology studies. To this end, we integrated the omics data of optimally grownEscherichia coliinto a stoichiometric model and constructed populations of non-linear large-scale kinetic models of alternative steady-state solutions consistent with the physiology of theE. coliaerobic metabolism. We performed metabolic control analysis (MCA) on these models, highlighting that MCA-based metabolic engineering decisions are strongly affected by the selected steady state and appear to be more sensitive to concentration values rather than flux values. To incorporate this into future studies, we propose a workflow for moving towards more reliable and robust predictions that are consistent with all alternative steady-state solutions. This workflow can be applied to all kinetic models to improve the consistency and accuracy of their predictions. Additionally, we show that, irrespective of the alternative steady-state solution, increased activity of phosphofructokinase and decreased ATP maintenance requirements would improve cellular growth of optimally grownE. coli.


2021 ◽  
Author(s):  
Susanne Pieschner ◽  
Jan Hasenauer ◽  
Christiane Fuchs

Mechanistic models are a powerful tool to gain insights into biological processes. The parameters of such models, e.g. kinetic rate constants, usually cannot be measured directly but need to be inferred from experimental data. In this article, we study dynamical models of the translation kinetics after mRNA transfection and analyze their parameter identifiability. Previous studies have considered ordinary differential equation (ODE) models of the process, and here we formulate a stochastic differential equation (SDE) model. For both model types, we consider structural identifiability based on the model equations and practical identifiability based on simulated as well as experimental data and find that the SDE model provides better parameter identifiability than the ODE model. Moreover, our analysis shows that even for those parameters of the ODE model that are considered to be identifiable, the obtained estimates are sometimes unreliable. Overall, our study clearly demonstrates the relevance of considering different modeling approaches and that stochastic models can provide more reliable and informative results.


2020 ◽  
Author(s):  
Alexander P Browning ◽  
David J Warne ◽  
Kevin Burrage ◽  
Ruth E Baker ◽  
Matthew J Simpson

AbstractMathematical models are routinely calibrated to experimental data, with goals ranging from building predictive models to quantifying parameters that cannot be measured. Whether or not reliable parameter estimates are obtainable from the available data can easily be overlooked. Such issues of parameter identifiability have important ramifications for both the predictive power of a model, and the mechanistic insight that can be obtained. Identifiability analysis is well-established for deterministic, ordinary differential equation (ODE) models, but there are no commonly-adopted methods for analysing identifiability in stochastic models. We provide an accessible introduction to identifiability analysis and demonstrate how existing ideas for analysis of ODE models can be applied to stochastic differential equation (SDE) models through four practical case studies. To assess structural identifiability, we study ODEs that describe the statistical moments of the stochastic process using open-source software tools. Using practically-motivated synthetic data and Markov-chain Monte Carlo (MCMC) methods, we assess parameter identifiability in the context of available data. Our analysis shows that SDE models can often extract more information about parameters than deterministic descriptions. All code used to perform the analysis is available on Github.


2019 ◽  
Author(s):  
Milenko Tokic ◽  
Ljubisa Miskovic ◽  
Vassily Hatzimanikatis

AbstractA high tolerance ofPseudomonas putidato toxic compounds and its ability to grow on a wide variety of substrates makes it a promising candidate for the industrial production of biofuels and biochemicals. Engineering this organism for improved performances and predicting metabolic responses upon genetic perturbations requires reliable descriptions of its metabolism in the form of stoichiometric and kinetic models. In this work, we developed large-scale kinetic models ofP. putidato predict the metabolic phenotypes and design metabolic engineering interventions for the production of biochemicals. The developed kinetic models contain 775 reactions and 245 metabolites. We started by a gap-filling and thermodynamic curation of iJN1411, the genome-scale model ofP. putidaKT2440. We then applied the redGEM and lumpGEM algorithms to reduce the curated iJN1411 model systematically, and we created three core stoichiometric models of different complexity that describe the central carbon metabolism ofP. putida. Using the medium complexity core model as a scaffold, we employed the ORACLE framework to generate populations of large-scale kinetic models for two studies. In the first study, the developed kinetic models successfully captured the experimentally observed metabolic responses to several single-gene knockouts of a wild-type strain ofP. putidaKT2440 growing on glucose. In the second study, we used the developed models to propose metabolic engineering interventions for improved robustness of this organism to the stress condition of increased ATP demand. Overall, we demonstrated the potential and predictive capabilities of developed kinetic models that allow for rational design and optimization of recombinantP. putidastrains for improved production of biofuels and biochemicals.


Sign in / Sign up

Export Citation Format

Share Document