scholarly journals Surveillance of genetic markers associated with Plasmodium falciparum resistance to artemisinin-based combination therapy in Pakistan, 2018–2019

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Abdul Qader Khan ◽  
Leyre Pernaute-Lau ◽  
Aamer Ali Khattak ◽  
Sanna Luijcx ◽  
Berit Aydin-Schmidt ◽  
...  
2021 ◽  
Vol 42 (2) ◽  
pp. 206-213
Author(s):  
G.Y. Benjamin ◽  
H.I. Inabo ◽  
M.H.I. Doko ◽  
B.O. Olayinka

Malaria is a disease of public health concern in Nigeria and sub-Saharan Africa. It is caused by intracellular parasites of the genus Plasmodium. The aim of this study was to detect genetic markers associated with Plasmodium falciparum drug resistance among malaria patients in Kaduna State, Nigeria. The study was a cross-sectional study that lasted from May 2018 to October 2018. Three hundred blood samples were collected from consenting individuals attending selected hospitals, in the three senatorial districts of Kaduna State, Nigeria. Structured questionnaire were used to obtain relevant data from study participants. The blood samples were screened for malaria parasites using microscopy and rapid diagnostic test kit. Polymerase Chain Reaction was used for detection of the drug resistance genes. Pfcrt, pfmdr1, pfdhfr, pfdhps and pfatpase6 genes were detected at expected amplicon sizes from the malaria positive samples. The pfatpase6 PCR amplicons were sequenced and a phylogenetic tree was created to determine their relatedness. Result showed that Pfcrt (80%) had the highest prevalence, followed by pfdhfr (60%), pfmdr1 (36%) and pfdhps (8%). Pfatpase6 was also detected in 73.3% of the samples, and a phylogenetic tree showed relatedness between the pfatpase6  sequences in this study and those deposited in the GenBank. In conclusion, the study detected that Plasmodium falciparum genes were associated with drug resistance to commonly used antimalarials.


2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Joaquín Pousibet-Puerto ◽  
Joaquín Salas-Coronas ◽  
Alicia Sánchez-Crespo ◽  
M. Angustias Molina-Arrebola ◽  
Manuel J. Soriano-Pérez ◽  
...  

2011 ◽  
Vol 55 (9) ◽  
pp. 4461-4464 ◽  
Author(s):  
Jutta Marfurt ◽  
Ferryanto Chalfein ◽  
Pak Prayoga ◽  
Frans Wabiser ◽  
Enny Kenangalem ◽  
...  

ABSTRACTFerroquine (FQ; SSR97193), a ferrocene-containing 4-aminoquinoline derivate, has potentin vitroefficacy against chloroquine (CQ)-resistantPlasmodium falciparumand CQ-sensitiveP. vivax. In the current study,ex vivoFQ activity was tested in multidrug-resistantP. falciparumandP. vivaxfield isolates using a schizont maturation assay. Although FQ showed excellent activity against CQ-sensitive and -resistantP. falciparumandP. vivax(median 50% inhibitory concentrations [IC50s], 9.6 nM and 18.8 nM, respectively), there was significant cross-susceptibility with the quinoline-based drugs chloroquine, amodiaquine, and piperaquine (forP. falciparum,r= 0.546 to 0.700,P< 0.001; forP. vivax,r= 0.677 to 0.821,P< 0.001). The observedex vivocross-susceptibility is likely to reflect similar mechanisms of drug uptake/efflux and modes of drug action of this drug class. However, the potent activity of FQ against resistant isolates of bothP. falciparumandP. vivaxhighlights a promising role for FQ as a lead antimalarial against CQ-resistantPlasmodiumand a useful partner drug for artemisinin-based combination therapy.


Sign in / Sign up

Export Citation Format

Share Document