scholarly journals Differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in fibrin scaffold by a histone deacetylase inhibitor

2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Zahra Bagheri-Hosseinabadi ◽  
Parvin Salehinejad ◽  
Seyed Alireza Mesbah-Namin
2022 ◽  
Author(s):  
Rohit Joshi ◽  
Pooja Murlidharan ◽  
Puspendra Yadav ◽  
Vedanshi Dharnidharka ◽  
Abhijit Majumder

Human Mesenchymal cells (hMSCs) are promising in regenerative medicine for their multi-lineage differentiation capability. It has been demonstrated that lineage specification is governed by both chemical and mechanical cues. Among all the different mechanical cues known to control hMSCs fate, substrate stiffness is the most well-studied. It has been shown that the naive mesenchymal stem cells when cultured on soft gel, they commit towards adipogenic lineage while when cultured on stiff gel they become osteogenic. Soft substrates also cause less cell spreading, less traction, less focal adhesion assembly and stress fibre formation. Furthermore, chromatin condensation increases when cells are cultured on soft substrates. As the nucleus has been postulated to be mechanosensor and mechanotransducer, in this paper we asked the question how mechanosensing and mechanoresponse process will be influenced if we change the chromatin condensation by using an external chemical stimulus. To address this question, we treated hMSCs cultured on soft polyacrylamide (PA) gels with a histone deacetylase inhibitor (HDACi) called Valproic Acid (VA) which decondense the chromatin by hyperacetylation of histone proteins. We found that the treatment with VA overrides the effect of soft substrates on hMSCs morphology, cellular traction, nuclear localization of mechnosensory protein YAP, and differentiation. VA treated cells behaved as if they are on stiff substrates in all aspects tested here. Furthermore, we have shown that VA controls hMSCs differentiation via activation of ERK/MAPK pathway by increasing the p-ERK expression which inhibits adipogenic differentiation potential of mesenchymal stem cells. Collectively, these findings for the first time demonstrate that inhibiting histone acetylation can override the mechanoresponse of hMSCs. This work will help us to fundamentally understand the mechanosignalling process and to control the hMSCs differentiation in tissue engineering and regenerative medicine.


Drug Research ◽  
2018 ◽  
Vol 68 (08) ◽  
pp. 450-456 ◽  
Author(s):  
Leila Mousazadeh ◽  
Effat Alizadeh ◽  
Nosratollah Zarghami ◽  
Shahryar Hashemzadeh ◽  
Sedigheh Aval ◽  
...  

Abstract Back ground Adipose tissue derived mesenchymal stem cells (ASCs) have unique potential for regenerative cell therapies. However, during ex-vivo cultivation, they undergo considerable quality loss regarding their phenotypic properties, stemness genes expression and differentiation potential. Recent studies reported that the loss of stemness properties of MSCs is a result of chromatin histone deacetylations through in-vitro cultivation. The present work aimed to study the effect of Trapoxin A (TPX) as a histone deacetylase inhibitor (HDACi) on overall stemness properties of ASCs. Methods First, the effects of TPX treatments on ASCs viability and proliferation were evaluated using MTT assay. Second, the desired doses of TPX supporting ASCs proliferation were determined and the lack of their negative effects was confirmed by DAPI staining. In addition, the influence of TPX on cell cycle of ASCs and the mRNA levels of stemness genes were measured by flowcytometry and qPCR, respectively. Finally, the effect of TPX treatment on osteogenic potential of ASCs was studied. Results The results indicated that short time TPX treatment (nM concentrations) caused stimulation of proliferation and considerable percentage of ASCs entered to S-phase of cell cycle (p<0.05). Moreover, the findings demonstrated significant up-regulation of stemness markers genes (Oct-4, Sox-2, Nanog, TERT, Klf-4, Rex-1) (p<0.05) and enhanced osteogenic differentiation potential of ASC after TPX treatment. Conclusion The addition of low dose of TPX to the expansion medium could possibly enhance the stemness properties and prevent the quality decline of ex-vivo cultured ASCs.


2018 ◽  
Vol 280 ◽  
pp. 51-58 ◽  
Author(s):  
Nazlıhan Aztopal ◽  
Merve Erkisa ◽  
Elif Erturk ◽  
Engin Ulukaya ◽  
Asuman Hatice Tokullugil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document