Histone Deacetylase Inhibitor (Trapoxin A) Enhances Stemness Properties in Adipose Tissue Derived Mesenchymal Stem Cells

Drug Research ◽  
2018 ◽  
Vol 68 (08) ◽  
pp. 450-456 ◽  
Author(s):  
Leila Mousazadeh ◽  
Effat Alizadeh ◽  
Nosratollah Zarghami ◽  
Shahryar Hashemzadeh ◽  
Sedigheh Aval ◽  
...  

Abstract Back ground Adipose tissue derived mesenchymal stem cells (ASCs) have unique potential for regenerative cell therapies. However, during ex-vivo cultivation, they undergo considerable quality loss regarding their phenotypic properties, stemness genes expression and differentiation potential. Recent studies reported that the loss of stemness properties of MSCs is a result of chromatin histone deacetylations through in-vitro cultivation. The present work aimed to study the effect of Trapoxin A (TPX) as a histone deacetylase inhibitor (HDACi) on overall stemness properties of ASCs. Methods First, the effects of TPX treatments on ASCs viability and proliferation were evaluated using MTT assay. Second, the desired doses of TPX supporting ASCs proliferation were determined and the lack of their negative effects was confirmed by DAPI staining. In addition, the influence of TPX on cell cycle of ASCs and the mRNA levels of stemness genes were measured by flowcytometry and qPCR, respectively. Finally, the effect of TPX treatment on osteogenic potential of ASCs was studied. Results The results indicated that short time TPX treatment (nM concentrations) caused stimulation of proliferation and considerable percentage of ASCs entered to S-phase of cell cycle (p<0.05). Moreover, the findings demonstrated significant up-regulation of stemness markers genes (Oct-4, Sox-2, Nanog, TERT, Klf-4, Rex-1) (p<0.05) and enhanced osteogenic differentiation potential of ASC after TPX treatment. Conclusion The addition of low dose of TPX to the expansion medium could possibly enhance the stemness properties and prevent the quality decline of ex-vivo cultured ASCs.

2022 ◽  
Author(s):  
Rohit Joshi ◽  
Pooja Murlidharan ◽  
Puspendra Yadav ◽  
Vedanshi Dharnidharka ◽  
Abhijit Majumder

Human Mesenchymal cells (hMSCs) are promising in regenerative medicine for their multi-lineage differentiation capability. It has been demonstrated that lineage specification is governed by both chemical and mechanical cues. Among all the different mechanical cues known to control hMSCs fate, substrate stiffness is the most well-studied. It has been shown that the naive mesenchymal stem cells when cultured on soft gel, they commit towards adipogenic lineage while when cultured on stiff gel they become osteogenic. Soft substrates also cause less cell spreading, less traction, less focal adhesion assembly and stress fibre formation. Furthermore, chromatin condensation increases when cells are cultured on soft substrates. As the nucleus has been postulated to be mechanosensor and mechanotransducer, in this paper we asked the question how mechanosensing and mechanoresponse process will be influenced if we change the chromatin condensation by using an external chemical stimulus. To address this question, we treated hMSCs cultured on soft polyacrylamide (PA) gels with a histone deacetylase inhibitor (HDACi) called Valproic Acid (VA) which decondense the chromatin by hyperacetylation of histone proteins. We found that the treatment with VA overrides the effect of soft substrates on hMSCs morphology, cellular traction, nuclear localization of mechnosensory protein YAP, and differentiation. VA treated cells behaved as if they are on stiff substrates in all aspects tested here. Furthermore, we have shown that VA controls hMSCs differentiation via activation of ERK/MAPK pathway by increasing the p-ERK expression which inhibits adipogenic differentiation potential of mesenchymal stem cells. Collectively, these findings for the first time demonstrate that inhibiting histone acetylation can override the mechanoresponse of hMSCs. This work will help us to fundamentally understand the mechanosignalling process and to control the hMSCs differentiation in tissue engineering and regenerative medicine.


2016 ◽  
Vol 65 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Takumi Okubo ◽  
Daiki Hayashi ◽  
Takayuki Yaguchi ◽  
Yudai Fujita ◽  
Motoharu Sakaue ◽  
...  

2011 ◽  
Vol 6 (8) ◽  
pp. 772-788 ◽  
Author(s):  
P. Hepsibha ◽  
T.V. Meenambiga ◽  
A. Mangalagow ◽  
A. Palanisamy ◽  
A. Stalin ◽  
...  

2017 ◽  
Vol 69 (6) ◽  
pp. 1573-1580
Author(s):  
K.P. Oliveira ◽  
A.M.S. Reis ◽  
A.P. Silva ◽  
C.L.R. Silva ◽  
A.M. Goes ◽  
...  

ABSTRACT The objective was to evaluate the in vitro effect of prolactin in osteogenic potential of adipose tissue-derived mesenchymal stem cells (ADSCs) in female rats. ADSCs were cultured in osteogenic medium with and without the addition of prolactin and distributed into three groups: 1) ADSCs (control), 2) ADSCs with addition of 100ng/mL of prolactin and 3) ADSCs with addition of 300ng/mL of prolactin. At 21 days of differentiation, the tests of MTT conversion into formazan crystals, percentage of mineralized nodules and cells per field and quantification of genic transcript for alkaline phosphatase, osteopontin, osteocalcin, bone sialoprotein, BMP-2 and collagen I by real-time RT-PCR were made. The addition of prolactin reduced the conversion of MTT in group 3 and increased the percentage of cells per field in the groups 2 and 3, however without significantly increasing the percentage of mineralized nodules and the expression of alkaline phosphatase, osteopontin, osteocalcin, bone sialoprotein, BMP-2 and collagen I. In conclusion, the addition of prolactin in concentrations of 100ng/mL and 300ng/mL does not change the osteogenic differentiation to the ADSCs of female rats despite increase in the cellularity of the culture.


Sign in / Sign up

Export Citation Format

Share Document