scholarly journals Correction to: Effects of acute hypoxia on human adipose tissue lipoprotein lipase activity and lipolysis

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Bimit Mahat ◽  
Étienne Chassé ◽  
Jean-François Mauger ◽  
Pascal Imbeault

An amendment to this paper has been published and can be accessed via the original article.

1978 ◽  
Vol 176 (3) ◽  
pp. 865-872 ◽  
Author(s):  
P Ashby ◽  
D P Bennett ◽  
I M Spencer ◽  
D S Robinson

Changes in adipose-tissue lipoprotein lipase activity that are independent of protein synthesis were investigated in an incubation system in vitro. Under appropriate conditions at 25 degrees C a progressive increase in the enzyme activity occurs that is energy-dependent. Part of the enzyme is rapidly inactivated when the tissue is incubated with adrenaline or adrenaline plus theophylline. The mechanism of this inactivation appears to be distinct from, and to follow, the activation of the enzyme. A hypothesis is presented to account for the results in terms of an activation of the enzyme during obligatory post-translational processing and a catecholamine-regulated inactivation of the enzyme as an alternative to secretion from the adipocyte.


1973 ◽  
Vol 132 (3) ◽  
pp. 633-635 ◽  
Author(s):  
P. de Gasquet ◽  
E. Péquignot ◽  
D. Lemonnier ◽  
A. Alexiu

The lipoprotein lipase activity per adipocyte was increased in the genetically obese rat (fa/fa). However, there was no difference between obese and lean animals when the enzyme activities were related to adipocyte surface area. The possible implications of the findings are discussed.


1989 ◽  
Vol 257 (4) ◽  
pp. R711-R716 ◽  
Author(s):  
D. B. West ◽  
W. A. Prinz ◽  
M. R. Greenwood

Adipose tissue blood flow was measured in five depots, and plasma concentrations of glucose, insulin, and triglyceride were measured at 0, 15, 30, and 45 min after the start of a meal in unanesthetized, freely moving rats. In addition, adipose tissue lipoprotein lipase activity was measured in four depots before and 45 min after the start of a meal. Plasma glucose was significantly elevated only at the 15-min time point, and while plasma triglyceride increased these changes did not reach significance. Plasma insulin was significantly elevated at all time points after a meal. Feeding resulted in a consistent decrease of adipose tissue blood flow expressed per gram wet weight of tissue. This decrease was maximal at 30 min after the start of feeding. The decrease in adipose tissue blood flow averaged 45% at 45 min after the start of feeding for the five depots evaluated. Lipoprotein lipase activity significantly increased in the retroperitoneal and mesenteric fat depots at 45 min after the meal start, but did not change in the epididymal or dorsal subcutaneous fat depots. These results suggest that a decrease in adipose tissue blood flow is a normal result of a meal in the rat. The regional specificity of changes in adipose tissue lipoprotein lipase activity supports the concept of regional specificity of function for adipose tissue and suggests that the mesenteric and retroperitoneal depots are particularly important for the storage of triglycerides immediately after a meal.


Metabolism ◽  
1979 ◽  
Vol 28 (11) ◽  
pp. 1122-1126 ◽  
Author(s):  
Andrew P. Goldberg ◽  
Deborah M. Applebaum-Bowden ◽  
William R. Hazzard

Sign in / Sign up

Export Citation Format

Share Document